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PREFACE

In this book, we will explore the emulation of human thought, capable of dealing

with uncertainties, ambiguities, and contradictions.

We agree with Anderson (1993) that much human thought can be expressed in

rules (Anderson, 1993). To handle uncertainties, ambiguities, and contradictions,

we will use fuzzy systems techniques, implemented by a fuzzy expert system. We

supply the fuzzy expert system language FLOPS with this book, so that the

readers can actually use our supplied example programs and write their own

programs.

An overwhelmingly important fact about human reasoning is that it is not a static

process. Data are gathered; some preliminary hypotheses are advanced and tested;

some of these may be rejected, and new hypotheses advanced; more data may be

required, until finally some conclusion is reached. A computer program to

emulate reasoning must proceed similarly. Unfortunately, in much mathematical

description of the thought process the dynamic nature is lost. We cannot afford to

make this error.

Expert systems are computer programs, designed to make available some of the

skills of an expert to nonexperts. Since such programs attempt to emulate in some

way an expert’s thinking patterns, it is natural that the first work here was done in

Artificial Intelligence (AI) circles. Among the first expert systems were the 1965

Dendral programs (Feigenbaum and Buchanan, 1993), which determined molecular

structure from mass spectrometer data; R1 (McDermott, 1980) used to configure

computer systems; and MYCIN (Shortliffe, 1976) for medical diagnosis. Since

the middle 1960s there have been many expert systems created for fields ranging

from space shuttle operations through intensive-care-unit patient alarm systems to

financial decision making.

There is a variety of ways in which the problem of creating computer programs to

act like an expert has been approached; a valuable reference is Jackson (1999). One

of the earliest methods employs rule-based systems, which use “If . . . Then . . . ”
rules to represent the expert’s reasoning process (if the data meet certain specified

conditions, then take appropriate actions). Other approaches include semantic or

associative nets (Quillian, 1968), frames (Minsky, 1975) and neural nets (Haykin,

1994), currently very popular in a wide variety of fields. Of these, clearly dominant

are the complementary rule-based systems and neural net approaches.

Neural nets do not require that the thinking patterns of an expert be explicitly

specified. Instead, two sets of data are required from the real world. These data

include all the inputs to the system, and the correct outputs corresponding to

xiii
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these input values. The first data set or training set is used to train the neural network

so that, as nearly as possible, the correct outputs are produced for each set of input

values. The second data set or validation set is used after the neural net has been

trained to make sure that correct answers are produced on different input data. An

advantage of neural nets is that it is not necessary to extract the thinking patterns

of the expert and to render these explicit. Disadvantages are that a substantial train-

ing set is required, and that while the neural net may produce reasonably correct

answers, in general, we have little or no idea how it does this. Considerable work

has been done on extracting rules from a trained neural net, but this work is not

yet advanced to a very satisfactory state.

Rule-based systems require that the expert’s knowledge and thinking patterns be

explicitly specified. Usually two persons (or groups) develop a system. These are the

domain expert, who knows how to solve the problem at hand but who is seldom

acquainted with computer programming; and the knowledge engineer, who is

thoroughly familiar with the computer technology involved and expert systems

but who has little or no knowledge of the problem at hand. Obtaining this knowledge

and writing proper rules is called the knowledge acquisition phase (Scott et al.,

1991). After the system has been written, it must be tuned for accuracy using a

tuning data set similar to the training set of a neural net, but usually much

smaller. After tuning, a rule-based system must be validated in the same way as a

neural net. Rule-based systems have two advantages. A large training set is

usually not required, and since the expert’s thinking is explicitly spelled out we

now know how he thinks about the problem. They have the disadvantage that the

knowledge acquisition phase may be difficult. A great advantage of fuzzy expert

systems is that most rules can be written in language that the expert can directly

understand, rather than in computer jargon; communication between domain

expert and knowledge engineer is greatly eased.

Another advantage of rule-based expert systems is the potential ability of rule-

based expert systems to learn by creation of new rules and addition of new data

to the expert knowledge data base. Probably the first example of a rule-based

expert system to rival human experts was DENDRAL, which deduced the molecular

structure of organic compounds from knowledge about fragments into which the

compound had been broken (Jackson, 1999, pp. 383 ff). One set of DENDRAL’s

programs worked directly with the data to produce candidate structures. An

additional program, Meta-DENDRAL, worked directly with the DENDRAL rules

to improve them and discover new rules, thus discovering new concepts about the

data. Meta-DENDRAL was not itself written as a rule-based expert system, but

the ability of a rule to generate new rules and new expert factual knowledge

opens the possibility for writing expert systems that can create new rules and

store new expert factual knowledge. This exciting possibility has not as yet been

well explored, perhaps due to the common (and, we think, quite incorrect) assump-

tion among conventional AI practitioners that expert systems are no longer to be

considered as artificial intelligence.

Rules, called production rules or simply productions have a long history in com-

puter science, ranging from the simple “if . . . then . . .” statements employed in such

xiv PREFACE
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computer languages as BASIC, FORTRAN, and C to complex systems especially

designed for processing rules such as the OPS family of languages by Charles

Forgy (Brownston et al., 1985) and the AI language Prolog and its fuzzy version

Fril (Baldwin et al., 1995). Their use in AI for psychological modeling was

pioneered by Newell and Simon (1972), and in expert systems by a number of AI

pioneers (Buchanan and Shortliffe, 1984). Certainly rule-based expert systems are

capable of emulating human thought patterns that are well defined; they are also

capable of emulating human learning, as we shall show. An appreciable body of

thought, especially among cognitive psychologists, agrees (Anderson, 1993).

Since the authors are deeply interested in the emulation of human thought, this

book is concerned with rule-based expert systems.

The systems we describe require that the knowledge engineer/programmer learn

three important new concepts: non-procedural data-driven languages; fuzzy systems

theory (fuzzy logic, fuzzy sets, and fuzzy numbers); and a parallel language, rather

than the conventional one-statement-at-a-time languages that dominate program-

ming at the present.

Most of the systems we shall describe are data-driven and nonprocedural.

Common computer languages (C, Fortran, Basic) are procedural; that is, program

statements are executed in the order in which they appear, unless explicit transfers

of control are executed. In data-driven rule-based programs, rules may be fired (exe-

cuted), whenever the data permit and the rules are enabled; the sequence in which

the rules appear in the program has little or nothing to do with the order in which

they are executed.

The systems are based on fuzzy systems theory, and include data types new to

most programmers: fuzzy sets, fuzzy numbers, and truth values. The use of discrete

fuzzy sets permits convenient handling of ambiguities and contradictions. All data

and rules are associated with truth values or confidences.

Finally, rules may be fired either sequentially, one rule at a time, or may be fired

effectively in parallel. (Few programmers have any experience with parallel

languages.)

The effect of these new concepts is a considerable increase in both power and

speed of conventional expert systems, at the expense of some mind stretching.

The FTP site that accompanies this book has a complete demonstration version of

a fuzzy expert system Integrated Development Environment (IDE) and run-time

package, and a number of example programs. Whenever possible, we use extremely

simple examples to illustrate the techniques involved. We hope the reader will not

confuse simple with trivial. For example, in illustrating a blackboard system

example programs will exchange one word of information; if we can exchange

one word, we can exchange a dozen or a thousand. Our examples of programs

that learn are equally simple.

Most books written for academic use concentrate on presenting didactic knowl-

edge. This book, while presenting a fair amount of didactic knowledge, concentrates

on teaching a skill: actually writing and debugging a fuzzy expert system. This is by

no means an easy task. Learning how to construct a fuzzy expert system by reading a

book is much like learning how to play tennis by reading a book; you have to play

PREFACE xv
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the game, hit keys, write and debug programs on the computer. The theory of fuzzy

mathematics is highly advanced; with the exception of fuzzy control systems, the

theory behind fuzzy expert systems for other than numeric outputs is quite ill devel-

oped. Much of the fuzzy expert systems theory in this book is original, and some-

times differs substantially from existing theory. For fuzzy reasoning, as distinct

from fuzzy control (in which there are several excellent books), there is little litera-

ture to which we can refer, except for the work of William Combs, Earl Cox, James

Baldwin and his colleagues and Nikola Kasabov; consequently, there are far fewer

references listed than is usual in a technical book. We hope that the theory in this

book will stimulate others to develop the theory of multistep fuzzy reasoning further.

The debt that those of us in the fuzzy field owe to Professor Lotfi Zadeh is incal-

culable; see Klir and Yuan (1996) for a selection of his most important papers, and

Klir and Yuan (1995) for an exposition of the most important concepts in fuzzy

systems theory. Not only did he originate the entire field and define its basic

concepts many years ago, but also he continues through the years to challenge

and inspire us with new ideas. We can only thank him and wish him many more

productive years.

WILLIAM SILER

JAMES J. BUCKLEY
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1 Introduction

The objective of this book is simple: to enable the reader to construct successful

real-world fuzzy expert systems for problem solving. Accomplishing this objective,

however, is not simple. We must not only transmit a good deal of knowledge in

several different fields, but must also transmit the skills necessary to use this

diverse knowledge fruitfully. To do this, we have concentrated on techniques that

are simple in themselves, and that embody considerable power in problem

solving. The examples we have chosen to illustrate these techniques are also must

often quite simple. But do not be misled; there is a vast difference between

“simple” and “trivial”.

Our scope will be, of necessity, somewhat larger than the preceding paragraph

might indicate. In real life, we solve problems by thinking about them; we must

therefore deal with the emulation of human thought by a computer program. In

real life, we do not often think about problems as conventional computers do; we

deal constantly with uncertainties, ambiguities, and contradictions. We sometimes

use deductive logic, but more often we think intuitively, assembling information

relevant to a problem, scanning it and coming to a conclusion. Besides this, we

can often learn from our experience.

Expert systems tend to be viewed as retarded children by conventional artificial

intelligence practitioners. Indeed, a conventional expert system may not have suffi-

cient capabilities for meaningful emulation of thought. There may be two reasons for

this: insufficient capability for emulating complex thought patterns; and lack of

capability for understanding natural language. FLOPS addresses the first of these

problems; it does not address the second, and still relies on a formal language.

The FLOPS language does, however, permit emulating thought patterns of consider-

able complexity, including two different types of learning.

This book will have far fewer references than would normally be expected in a

book of this type. There is a reason for this. Fuzzy systems theory has had a

major impact on the field of process control, and in this field there are many refer-

ences to be found. But this book reports theory and methods for general purpose

reasoning, a much more difficult task than process control, and a field in which

there has been very little research and very few meaningful papers published.

There are books by Kandel (1991) and Kasabov (1998) that deal with fuzzy

expert systems, but not in the detail necessary to actually construct one other than

A hair perhaps divides the false from true.

—The Rubaiyat of Omar Khayam, translated by Edward Fitzgerald.

1

Fuzzy Expert Systems and Fuzzy Reasoning, By William Siler and James J. Buckley
ISBN 0-471-38859-9 Copyright # 2005 John Wiley & Sons, Inc.
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for control, nor in the requirements that the emulation of though places on general-

purpose fuzzy reasoning systems.

Computer programming of rule-based fuzzy expert systems can be difficult for

those trained in Western dichotomous thinking. There are three novel concepts

involved: fuzzy systems theory; nonprocedural data-driven programming; and

parallel programming. Fuzzy systems theory permits handling uncertainties,

ambiguities, and contradictions. Nonprocedural data-driven programming means

that when FLOPS is in run mode and firing (executing) rules, the order in which

rules are fired has nothing to do with the order in which they appear in the

program, but only on the available data and on which rules or blocks of rules are

enabled or disabled for firing. (Conventional procedural languages execute their

statements sequentially in the order in which they are written, except for explicit

transfers of control.) Parallel programming language means that all fireable rules

are executed effectively at once instead of some predefined order.

In Chapters 1 and 2, we treat the basic programming problems. Chapters 3–5 deal

with the requisite fuzzy mathematics involved; Chapters 6 and 7 treat methods of

fuzzy reasoning, that is, inferring new truths. Chapter 8 deals with fuzzy expert

system shells, the integrated development environments for constructing fuzzy

expert systems. Chapters 9–12 handle increasingly sophisticated problem-solving

techniques. Finally, Chapter 13 considers real-time on-line expert systems in

which the data are automatically acquired from an external source. Because of the

number of concepts and techniques that are unfamiliar to many readers, we have

occasionally covered a topic more than once in different contexts to avoid flipping

back and forth in the book.

1.1 CHARACTERISTICS OF EXPERT SYSTEMS

Expert systems are computer programs, designed to make available some of the

skills of an expert to nonexperts. Since such programs attempt to emulate the think-

ing patterns of an expert, it is natural that the first work was done in Artificial

Intelligence (AI) circles. Among the first expert systems were the 1965 Dendral

programs (Feigenbaum and Buchanan, 1993), which determined molecular struc-

ture from mass spectrometer data; R1 (McDermott, 1980) used to configure

computer systems; and MYCIN (Shortliffe, 1976) for medical diagnosis. Since

the mid-1960s there have been many, many expert systems created for fields

ranging from space shuttle operations through hospital intensive-care-unit patient

monitoring to financial decision making. To create expert systems, it is usual to

supply a development environment and possibly a run-time module; these are

called expert system shells, of which a number are available. We can view human

knowledge as declarative (facts we have in stored in memory), and procedural,

skills in utilizing declarative knowledge to some purpose.

Most AI practitioners do not consider expert systems as deserving the name of

Artificial Intelligence. For example, Schank (1984, p. 34) states: “Real intelligence

demands the ability to learn, to reason from experience, to shoot from the hip,
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to use general knowledge, to make inferences using gut-level intuition. Expert

systems can do none of these. They do not improve as a result of experience.

They just move on to the next if/then rule”. The Random House unabridged

dictionary gives one definition of learning as “the act or process of acquiring

knowledge or skill”; certainly an expert system, by adding to its database of

facts, acquires knowledge, and by adding new rules acquires skill. FLOPS

permits both of the learning techniques. While we agree with Schank’s categoriz-

ation of “Real intelligence”, we cannot agree that “Expert systems can do none of

these”. FLOPS can construct new rules and add to its existing database of factual

knowledge, and in parallel mode can scan a database quickly without the inordi-

nate systems overhead required by sequential systems. These capabilities deny

Schank’s blanket statement that expert systems are incapable of any of the charac-

teristics of real intelligence.

There is a variety of ways in which the problem of creating computer programs to

act like an expert has been approached (Jackson, 1999). The earliest employs

rule-based systems, which use If-Then rules to represent the expert’s reasoning

process (if the data meet certain specified conditions, then take appropriate

actions). There is a respectable body of opinion among cognitive scientists that

a very significant part of human reasoning can be expressed by rules (Anderson,

1993); this view lends additional interest to rule-based systems. Other app-

roaches include semantic or associative nets (Quillian, 1968), frames (Minsky,

1975) and neural nets, currently very popular in a wide variety of fields. Of these,

clearly dominant are the complementary rule-based systems and neural net

approaches.

We are concerned in this book with representing procedural knowledge by

rules; IF the available facts meet certain criteria THEN do whatever the rule speci-

fies. Declarative (factual) knowledge may be represented by stored data.

Whatever type of expert system is employed, we must consider what the

prerequisites are for constructing a successful system. The two primary sources

of knowledge are the skills of an expert in the field, and available historical

data. Rule-based expert systems rely considerably on incorporating the skills of

an expert in the problem domain, but relatively little on historical data; neural net-

works rely heavily on an extensive historical database, and relatively little on a

domain expert.

1.1.1 Production Systems

We distinguish between two types of expert systems; procedural systems, written in

conventional procedural languages such as Cþþ, and production systems, that

employ rules of the type “IF (the data meet certain specified conditions) THEN

(perform the specified actions)”. The “IF” part of the rule is called the antecedent;

the “THEN” part is the consequent.

The “Tower of Hanoi” is a typical AI toy problem. We have three vertical spin-

dles; on one spindle we have a number of disks of decreasing diameter from the

bottom up. The problem is to move the disks from one spindle to another, one
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disk at a time, never placing a disk on top of one of smaller diameter. A production

rule from this problem might be

rule (goal Fires if only one disk to move)
IF (in Spindles n = 1 AND source = <S> AND destination = <D>)
THEN

write "*** move <S> to <D> ***\n",
delete 1;

In the antecedent of this rule, Spindles is a data structure containing items n
(number of disks on the spindle), source (name of the spindle from which we

are moving a disk) and destination (name of the spindle to which we are

moving a disk). If there exists an instance of Spindles in which n is 1, source
has some value <S> (whatever it is) and destination has some value <D>,

then we write a message to the screen and delete the instance of Spindles. A pro-

duction system may contain dozens, hundreds, or even thousands of rules.

1.1.2 Data-Driven Systems

Of especial interest are data-driven production systems. Such languages are quite

different from the common procedural languages like C, Pascal, Fortran, or Basic.

In a procedural language, the statements that comprise a major part of the language

are executed in the order in which they appear (unless a specific transfer of control is

encountered); in a data-driven language, the rules that comprise a major part of the

language are candidates for execution whenever the data satisfy the data specifica-

tions in the “IF” part of the rule.

If the data satisfy more than one rule at once, common rule-based languages such

as the well-known OPS languages fire their rules sequentially, one at a time. First,

we determine which rules are made fireable by the data. Next, a rule-conflict

algorithm decides which of these should be executed ( fired ). The fireable rules

that were not picked for firing are usually placed on a stack for firing later on in

case no rules are newly fireable (backtracking). The selected rule is fired, that is

the THEN part of the rule is executed, and we go back to looking for newly fireable

rules.

1.1.3 Special Features of Fuzzy Systems

Most fuzzy expert systems provide for parallel firing of concurrently fireable rules;

that is, all fireable rules are fired effectively at one time, emulating a parallel

computer. Parallel operation has several advantages for fuzzy systems. A parallel

language is especially appropriate when working with fuzzy sets: It makes program-

ming easier and runs considerably faster than an equivalent sequential system. But

sequential programming has advantages too in some cases; it is appropriate for

eliciting information from a user when each question to be asked depends on the

answer to the previous question. Accordingly, a fuzzy expert system language
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should provide both sequential and parallel rule-firing mode. These features of a

fuzzy expert system language, unfamiliar to most programmers, creates a steep

learning curve. The budding fuzzy expert system builder has to learn:

. Working with IF-THEN rules as the primary element of the language.

. Learning the basics of fuzzy systems theory: fuzzy sets, fuzzy logic, and fuzzy

numbers.

. Learning a data-driven non-procedural language.

. Working with both sequential and parallel language execution.

To ease the entry into such novel languages, it is extremely important that the inte-

grated program development environment (IDE) provide a solid base of help files to

the user, as well as a variety of both simple tutorial and simplified real-world

programs.

1.1.4 Expert Systems for Fuzzy Control and for Fuzzy Reasoning

There are two general types of fuzzy expert systems: fuzzy control and fuzzy reason-

ing. Although both make use of fuzzy sets, they differ qualitatively in methodology.

Fuzzy process control was first successfully achieved by Mamdani (1976) with a

fuzzy system for controlling a cement plant. Since then, fuzzy control has been

widely accepted, first in Japan and then throughout the world. A basic simple

fuzzy control system is simply characterized. It accepts numbers as input, then

translates the input numbers into linguistic terms such as Slow, Medium, and Fast

( fuzzification). Rules then map the input linguistic terms onto similar linguistic

terms describing the output. Finally, the output linguistic terms are translated into

an output number (defuzzification). The syntax of the rules is convenient for

control purposes, but much too restrictive for fuzzy reasoning; defuzzification and

defuzzification are automatic and inescapable. There are several development

environments available for constructing fuzzy control systems. A typical fuzzy

control rule might be

. IF input1 is High AND input2 is Low THEN output is Zero.

Rules for fuzzy reasoning cannot be described so compactly. The application

domain of fuzzy control systems is well defined; they work very satisfactorily

with input and output restricted to numbers. But the domain of fuzzy reasoning

systems is not well defined; by definition, fuzzy reasoning systems attempt to

emulate human thought, with no a priori restrictions on that thought. Fuzzy

control systems deal with numbers; fuzzy reasoning systems can deal with both

numeric and non-numeric data. Inputs might be temperature and pulse, where temp-

erature might 38.58C and pulse might be 110 and “thready”, where “thready” is

clearly non-numeric. Output might be “CBC” and “Admit” and “transfer MICU”

(not very realistic, but illustrates non-numeric data input and output). Accordingly,
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rules for fuzzy reasoning do not make fuzzification and defuzzification automatic

and inescapable; they may be broken out as separate operations that may or may

not be performed as the problem requires.

The syntax of fuzzy reasoning rules accepts a wide variety of rule types. Here are

two.

1. IF symptom is Depressive and duration is �. about 6) THEN diagnosis is

Major_depression;

This rule resembles a fuzzy control rule, but it is actually quite different. In a
fuzzy control rule, “symptom” would be a scalar number; in the fuzzy reason-
ing rule, “symptom is a (fuzzy) set of linguistic terms of which “depressive” is
a member. Similarly, in a fuzzy control rule “diagnosis” would be a scalar
number; in the fuzzy reasoning rules, “diagnosis” is a (fuzzy) set of diagnoses
of which “depressive” is a member.

2. Rule block 8 (goal Generates rule for response to conditioned stimuli)

IF (in Count id1 = <ID2> AND id2 = <ID1> AND N . 2)
(in Wired-in id = <ID2> AND response = <R>)

THEN
rule block 3 (goal Conditions stimulus <ID1> to
stimulus <ID2>)
IF (in NewStimulus id = "<ID2>")
THEN

message ’<ID1> - LOOK OUT - <ID2> coming\, <R>!\n’;

A rule for learning, this rule has no counterpart at all in fuzzy control. Under

specified circumstances, a new rule is created associating previously unassociated

stimulus so that (e.g.) the burnt child learns to dread the fire.

1.2 NEURAL NETS

Neural nets (Haykin, 1994) do not require that the thinking patterns of an expert be

explicitly specified. Instead, two sets of data are required from the real world. These

data include all the inputs to the system, and the correct outputs corresponding to

these input values. The first data set or training set is used to train the neural

network so that, as nearly as possible, the correct outputs are produced for each

set of input values. The second data set or validation set is used after the neural

net has been trained to make sure that correct answers are produced on different

input data. An advantage of neural nets is that it is not necessary to extract the think-

ing patterns of an expert and to render these explicit. Disadvantages are that a

substantial training set is required, and that while the neural net may produce reason-

ably correct answers, in general we have little or no idea how it does this. Consider-

able work has been done on extracting rules from a trained neural net, but this work

is not yet advanced to a very satisfactory state. A rough comparison between neural

nets and expert systems is shown in Table 1.1.
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Conditions under which neural nets may be the best approach include the

following:

. There are ample data to form a training set of actual inputs and correct outputs

corresponding to the inputs.

. No one has a good idea how outputs are related to inputs.

. We are not particularly interested in how inputs and outputs are related, so long

as the system works.

The first of these conditions must be met; the second militates strongly in favor of a

neural net; and the third helps incline us toward a neural net.

Conditions under which a fuzzy expert system is likely to be better than a

neural net:

. We have a domain expert who knows fairly well how inputs and outputs are

related.

. We do not have sufficient data to form a training set, possibly because the poss-

ible combinations of inputs and outputs are too numerous, or because collecting

a training set would be prohibitively expensive.

. We are quite interested in the way in which outputs can be derived from inputs.

The first condition is almost essential, although a very skilled knowledge engineer

may be able to become a domain expert with the dedicated help of persons less

than fully expert in the understanding the task to be performed.

1.3 SYMBOLIC REASONING

Key to expert systems (and to AI generally, for that matter) is the concept of reason-

ing with symbols. (Ordinary procedural computer languages such as C and Fortran

use symbols, but in a more restricted context.) In procedural languages such as C,

symbols can represent numerical or character string data, or a collection of such

data in data structures. Symbols can also represent logical propositions (simple

Boolean comparisons between simple data items), program flow control by such

constructs as “if . . .”, “for . . .”, and “while . . .”, and smaller subprograms

(functions). In object-oriented programs, symbols can represent objects, collections

of both data items and functions. However, for the symbolic reasoning required by

AI, symbols can represent almost anything, and languages more appropriate than

TABLE 1.1 Comparison of Fuzzy Rule-Based Systems and Neural Nets

Property Fuzzy Expert System Neural Net

Data required to construct system Minimal Considerable

Expert knowledge required to construct system Considerable Minimal
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C or FORTRAN for symbol manipulation are used, such as LISP and PROLOG. For

expert systems, specialized AI-based languages for rule-based reasoning such as the

OPS family, Prolog, and CLIPS can be used.

For fuzzy expert systems, using familiar words as symbols to represent such con-

cepts as fuzzy sets, fuzzy numbers, uncertainties, and modifying words (adjectives

and adverbs) called hedges, special languages are available such as METUS (Cox,

1999); FLOPS, a fuzzy superset of OPS5, described in this book; and FRIL, a fuzzy

superset of PROLOG (Baldwin et al., 1995). There are also special languages for

fuzzy process control, but while very good for that purpose they lack the generality

usually expected of an expert system language.

The buzz-word phrase “Computing with Words” has been very popular with

fuzzy systems people for some years now. However, their use of words has been

largely confined to words that describe numbers. This severe and very unfortunate

limitation has greatly handicapped developing the enormous potential power of

fuzzy systems theory. FLOPS is intended to permit emulation of human thought,

although it has a long way to go to complete its objective; consequently, we must

be concerned with words in a much more general sense than fuzzy control programs.

At a minimum, we must think of words as parts of speech: nouns (e.g., age), simple

verbs (equals), adverbs (approximately), conjunctions (“and”) and adjectives

(about), and define these appropriately (in the semantic sense) and precisely (say

in Backus-Nauer Form) for our computer language.

1.4 DEVELOPING A RULE-BASED EXPERT SYSTEM

Rule-based systems require that the expert’s knowledge and thinking patterns be

explicitly specified. Usually, two persons (or groups) develop a system together.

These are the domain expert, who knows how to solve the problem at hand but who

is seldom acquainted with computer programming; and the knowledge engineer,

who is thoroughly familiar with the computer technology involved and expert

systems, but who usually has little or no knowledge of the problem at hand. Obtain-

ing this knowledge and writing proper rules is called the knowledge acquisition

phase (Scott et al., 1991). After the system has been written, it must be tuned for

accuracy using a tuning data set similar to the training set of a neural net, but

usually much smaller. After tuning, a rule-based system must be validated in the

same way as a neural net. Rule-based systems have two advantages. A large training

set is usually not required, and since the expert’s thinking is explicitly spelled out,

we now know how he thinks about the problem. They have the disadvantage that the

knowledge acquisition phase may be difficult. A great advantage of fuzzy expert

systems is that the rules can be written in language that the expert can directly under-

stand, such as “if age is about 40” or “if patient is very old”, rather than in computer

jargon. Communication between domain expert and knowledge engineer is thus

greatly eased.

Another advantage of rule-based expert systems is their ability to learn by

creation of new rules. Probably the first example of a rule-based expert system to
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rival human experts was DENDRAL, which deduced the molecular structure of

organic compounds from knowledge about fragments into which the compound

had been broken (Jackson, 1999, pp. 383 ff). One set of DENDRAL’s programs

worked directly with the data to produce candidate structures. An additional pro-

gram, Meta-DENDRAL, worked directly with the DENDRAL rules to improve

them and discover new rules, thus discovering new concepts about the data.

Meta-DENDRAL was not itself written as a rule-based expert system, but the

ability of a rule to generate new rules and new expert factual knowledge opens

the possibility for writing an expert system that can create new rules and store

new expert factual knowledge. This exciting possibility has not as yet been well

explored, perhaps due to the general (and, we think, incorrect) assumption that

expert systems are no longer to be considered as artificial intelligence.

Many years ago the British scientist Alan Turing proposed a test for machine

intelligence. In one room, we have a computer terminal with a human operator.

This master terminal is linked to two other rooms. In one of these rooms we have

a computer; in the other, a terminal with a human operator. If the operator at the

master terminal cannot detect which of the other two rooms has the computer,

then the computer’s program can be called intelligent. There is no restriction on

how the computer program does what it does; its performance is all the Turing

test considers.

Our interest is not in passing the Turing test. Instead, we are interested in the

nature of a computer program; we would like it to be constructed so as to emulate

the thought processes of a human and particularly those thought patterns that can

be verbally expressed. If a computer program acts as if it were intelligent, but

does so through symbol manipulations that have little or no connection to normal

thought, we are not especially interested.

As we have mentioned, a substantial body of thought, stemming largely from the

work of Artificial Intelligence pioneer Allen Newell, contends that much verbal

reasoning can be successfully expressed in production rules, called here simply

rules (Anderson, 1993). We subscribe to this line of thought. Rules take the form

“IF the data available meet certain specified conditions THEN take these specified

actions”, in which “actions” should be viewed in a very broad context, including

drawing conclusions, firm or tentative. A sample simple rule might be “IF the car

engine will not turn over when attempting to start THEN check if the battery is

discharged”. A more complex fuzzy rule might be “IF the pulmonary artery systolic

pressure is considerably reduced AND the diastolic pressure is at least normal

THEN the pressure reading might be damped”.

1.5 FUZZY RULE-BASED SYSTEMS

Fuzzy rule-based systems, in addition to providing convenient handling of uncer-

tainties of values (which can be done in other ways), furnish several additional

capabilities. Approximate numerical values can be specified as fuzzy numbers.

Numerical input values can be easily translated into descriptive words such as

1.5 FUZZY RULE-BASED SYSTEMS 9

TEAM LinG - Live, Informative, Non-cost and Genuine !



“Fast” or “Large”. Ambiguities and contradictions are easily handled by discrete

fuzzy sets. Modifying words such as “very” and “slightly” are easily incorporated

into the rule syntax. The approximate versions of the full range of Boolean numeri-

cal comparisons such as “�,¼” or “approximately less than or equal to” are easily

implemented. Most of our experience with fuzzy rule-based systems has been gained

over the past 15 years using the fuzzy expert system shell FLOPS (Siler et al., 1987),

and this book will rely heavily on that language. We have shared experiences and

ideas with Earl Cox (1999, 2000), who developed the fuzzy expert system shell

Metus, and who has deployed many expert systems using that language. We are

also aware of the important PROLOG-based shell FRIL by Baldwin et al. (1995).

The FLOPS language is still under development, but it does provide most of the

features discussed here.

Fuzzy rule-based systems capable of both sequential and parallel rule processing

add additional features to conventional expert system languages: convenient hand-

ling of uncertainties, ambiguities and contradictions, and modifying words such as

“very” and “somewhat”. Thus fuzzy systems increase our ability to emulate the non-

rigid thinking patterns of (say) physicians and biologists as well as the relatively

rigid patterns of (say) computer scientists. It is very unfortunate that most fuzzy

expert systems have been devoted to control applications, and hence have concen-

trated almost exclusively on symbols that represent numerical quantities. While

the enormous success of fuzzy control systems makes this understandable, it

means that the ability of fuzzy rule-based systems to emulate reasoning with both

numeric and non-numeric quantities remains to a large extent unexplored. We

hope that this book will help illustrate the capabilities and potentialities of fuzzy

rule-based systems for the emulation of thought in a much more general sense.

Most if not all human thinking is initially nonverbal. However, we have become

reasonably successful in translating some thought into words (How can I say this?);

knowledge engineers spend a great deal of time with domain experts converting

their thought patterns into words, an hence to rules. Some nonverbal thought can

be expressed in mathematical terms (e.g., feature extraction from images). A

decent expert system language should enable writing a computer program using

both words and mathematical transformations.

1.6 PROBLEMS IN LEARNING HOW TO CONSTRUCT
FUZZY EXPERT SYSTEMS

The first problem for the knowledge engineer is to become adept at a different kind

of computer language. Next is the problem of acquiring relevant knowledge from the

domain expert. Finally, there are the problems of writing, debugging, calibrating,

and validating the expert system itself.

Rule-based expert systems, and especially fuzzy expert systems, pose some

learning problems for the programmer used to procedural languages such as C,

Fortran, or Basic. Rules are basically IF statements: IF (this is true) THEN (execute

the following instructions.) The IF part of a rule is called the antecedent, and the
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THEN part is called the consequent. At this level, there does not seem to be any sub-

stantial difference between a rule-based expert system and a conventional C or Fortran

program. However, the most powerful expert systems are not executed in a step-by-

step procedural fashion, in which statements are executed in the order in which they

appear, unless a specific transfer-of-control instruction is encountered. Instead, many

expert system programs are data-driven; that is, rule are executed (fired) whenever the

data sufficiently satisfy the antecedent, regardless of the sequence in which the rules

appear in the program. This immediately creates the first problem—what do we do if

the data satisfy the antecedents of two or more rules simultaneously? If we select one

of these rules for firing next, what do we do with the fireable but unfired rules? Alter-

natively, wemight elect to fire all the concurrently fireable rules effectively in parallel.

Very few programmers have any experiencewith parallel languages—most of us have

experience only with languages in which the instructions are executed sequentially.

Another problem involves running time—if we change a piece of data, must we

then examine all the rules over again to see which ones are now newly fireable?

Charles Forgy’s RETE algorithm goes a long way to solving that problem, but

running time for a data-driven expert system is still long compared to procedural

language programs, a price paid for the flexibility of data-driven systems and their

inherent similarity to human thought patterns.

Another learning problem involves the use of multivalued logic. In a fuzzy expert

system, things may be completely true, completely false, or anything in between.

Ambiguities abound in fuzzy systems, and contradictions are frequently encoun-

tered; fuzzy systems provide structured ways of handling uncertainties, ambiguities,

and contradictions, none of which are ordinarily encountered in conventional com-

puter programming. Fuzzy systems also employ some special terms and concepts:

fuzzy sets, fuzzy numbers, and membership functions. Monotonic and non-

monotonic reasoning become routine concepts and acquire special meaning.

All this means that a fair amount of effort is required to become fluent in a fuzzy

expert system language. There are, however, some bright points. You will be able to

write rules using common words such as “very slow”, “somewhat”, and “roughly

60”, making communication between knowledge engineer and domain expert

much easier.

1.7 TOOLS FOR LEARNING HOW TO CONSTRUCT
FUZZY EXPERT SYSTEMS

While this book aims to provide the reader with some theoretical and practical

knowledge about fuzzy expert systems (which might be useful in passing an exam-

ination), we also aim to teach the reader a skill in constructing these systems in the

real world. It is impossible to teach a skill without practice; if the reader does not

actually run and write programs, he will no more learn this skill than a person

who tries to learn to play tennis by reading books and listening to classroom lectures.

TheCDRom that accompanies this book has important tools to aid the reader. First,

there are the two major programs: FLOPS itself, the inference engine and run-time
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environment for executing and debugging FLOPS programs; and TFLOPS, the IDE

for writing and testing FLOPS programs. Extensive help files are available in both

FLOPS and TFLOPS, including an on-line manual and basic fuzzy math tutorial.

Second, there is a fairly large number of example FLOPS programs, both tutorial

and simplified versions of working expert systems. Third, there are simple specialized

programs to illustrate some theoretical points made in this book. The reader is urged to

make full use of these tools, especially TFLOPS for editing and running FLOPS

programs. A typical TFLOPS screen is shown in Figure 1.1.

1.8 AUXILIARY READING

While this book is designed to be self-sufficient for our major purpose, we also

recommend some auxiliary reading for readers with special interests. Jackson

(1999) gives excellent coverage of non-fuzzy expert systems, although his treatment

of fuzzy expert systems leaves very much to be desired. Klir and Yuan (1996) give

in-depth coverage of modern fuzzy mathematics. Scott et al. (1991) cover issues of

knowledge acquisition by the knowledge engineer. Anderson (1993) discusses rules

from the viewpoint of a cognitive scientist interested in how the mind functions.

Figure 1.1 Typical TFLOPS screen, with two FLOPS programs being edited and an. . . error

log from a FLOPS run.
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Finally, Cox (1999) presents much information on fuzzy expert systems from the

viewpoint of finance and management; his discussion of modifying words used in

rules, such as “somewhat”, “very”, and so on (called hedges) is unsurpassed, and

his experience in constructing real-world fuzzy expert systems is extensive.

1.9 SUMMARY

Expert systems are computer programs designed to bring an expert’s skill to solving

a particular problem. The most common types of expert systems are rule-based pro-

grams and neural networks. These differ considerably in the availability of expert

knowledge and data required to construct the system, although there is little differ-

ence in the data required to validate the system once constructed.

Production systems are rule-based systems whose rule syntax is “IF (the data

satisfy these specified conditions) THEN (perform these specified actions”. The

“IF” part of the rule is the antecedent; the “THEN” part is the consequent. Pro-

duction systems are most often data driven; that is, the eligibility of a rule for

firing depends solely on the data, and is independent of the rule’s placement in

the program. During a program run, the truth value of a rule’s antecedent is calcu-

lated; if the antecedent is sufficiently true, the rule is eligible for firing. If sequential

rule-firing has been chosen, one of the rules whose antecedents are sufficiently true is

chosen for firing by a rule-conflict algorithm; if parallel rule-firing has been chosen,

all fireable rules are fired, effectively in parallel. Because of the features of a fuzzy

expert system language which are unfamiliar to most programmers, it is especially

important to have a good IDE, which makes available good help files on a number of

topics. Special debugging tools should be available.

Two types of persons usually develop rule-based expert systems: domain expert

and knowledge engineer. Ideally, the domain expert is thoroughly familiar with the

problem domain and how to solve problems that arise in that domain, but who may

be completely ignorant of computer programming and expert systems. The knowl-

edge engineer, in contrast, is thoroughly familiar with expert system tools and with

the construction of expert systems, but may be completely ignorant of the problem

domain. These two work together on the expert system’s construction, sharing

knowledge and skills.

1.10 QUESTIONS

1.1 In what three respects does FLOPS differ from conventional programming

languages?

1.2 How does a data-driven non-procedural language differ from conventional

procedural languages?

1.3 What can a language using fuzzy mathematics do that conventional program-

ming languages cannot?
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1.4 What is the difference between a parallel and a sequential program?

1.5 In what major respect can FLOPS programs conform to Roger Schank’s

definition of intelligence?

1.6 In what fundamental respects do expert systems differ from neural networks?

1.7 How do expert systems for fuzzy control differ from those for fuzzy reason-

ing?

1.8 What two kinds of people are usually involved in the construction of an

expert system?

1.9 In what major respects do fuzzy expert systems differ from nonfuzzy

systems?

1.10 What problems are encountered when first constructing a fuzzy expert

system?

1.11 What important tool should be available for constructing a fuzzy expert

system?

14 INTRODUCTION
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2 Rule-Based Systems: Overview

Throughout this and other chapters of this book, we will make extensive use of the

demonstration programs supplied on the CD ROM, which accompanies this book.

Remember that since FLOPS is a fuzzy system, truth values (certainty factors)

are attached to all data values and, if we wish, to rules themselves. In FLOPS,

crisp truth values (true or false, 0 or 1) are a special case; in general, truth-values

may range anywhere from false to true and anything in between.

2.1 EXPERT KNOWLEDGE: RULES AND DATA

It is common in books about AI to equate a “knowledge base” to a set of rules.

We disagree emphatically with that viewpoint. We view a knowledge base in a

light commensurate with the definition of learning given in Chapter 1: the acqui-

sition of knowledge or skill. The factual knowledge that we have acquired is part

of our knowledge base; the skill with which we use that knowledge to accomplish

tasks, acquire new facts and new skills, and even invalidate cherished beliefs,

incorporated in rules, is an indispensable other part. We then divide a knowledge

base into two parts. Factual knowledge relevant to the problem at hand is reali-

zed as data or perhaps (more organized) as a database or bases. The skills needed

to use the knowledge available to us to solve a problem, and perhaps guide us in

acquiring new facts and learning new skills, are realized as rules. In the course of

this book, we will have simple examples of both of these kinds of learning.

It would be very nice if all skills could be efficiently represented as rules, and in

fact a great number of skills can be so represented, notably those that involve verbal

human thought. However, some skills, such as the recognition of what is represented

in an image, can be only partly represented by rules. Other skills, such as that of a

ballplayer in throwing or catching a ball, really defy efficient representation by rules.

Skills like these usually require programs written in a procedural language. Conse-

quently, the expert system should be able to use rules that will call procedural

language programs and interpret their results. (Rule-based systems are notoriously

bad at number crunching!)
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We will represent a knowledge base of skills as a set of rules. Our rules will be of

the form

if (this is true) then (do that) (2:1)

A very simple example of an everyday rule might be

“ if the light is green then cross the street”: (2:2)

We will now examine this rule structure more closely.

2.2 RULE ANTECEDENT AND CONSEQUENT

In (2.1) the clause (“the light is green”, or more generally “this is true”) is called the

antecedent; the clause (“cross the street”, or more generally “do that”) is called

the consequent. In applying this rule, we first evaluate the truth of the antecedent.

If the antecedent is sufficiently true, we execute the consequent instructions.

We suppose that we have previously learned that the rule is valid. Assuming we

wish to cross the street, we first see if the antecedent is true by comparing the

observed data (the color of the traffic light) to the value given in the rule (red). If

the comparison in the antecedent holds, then we execute the consequent instruction

and cross the street. (Our rule here is not very good; it neglects to check for a car,

which might be turning right directly in front of us.)

2.2.1 Antecedents

In formal terms, the antecedent is a logical proposition whose truth can be deter-

mined. The antecedent may be complex, made up of several simple propositions

whose individual truths are combined by AND, OR, and NOT connectives, such as

“IF (speed is fast) AND (it is raining) AND NOT (windshield wipers on)

THEN turn on windshield wipers, reduce speed (2:3)

Most antecedent clauses will be comparisons between a data value for the case at

hand and a value specified for a particular rule. Clearly, the range of circumstances,

which a rule could cover, will depend on the types of data admissible in the syntax

of our rules. In a conventional non-fuzzy expert system, data types commonly provided

include numbers (if x is 35) and character strings (if name is “John”). Fuzzy expert

systems provide additional data types: fuzzy numbers (if age is about 30) and fuzzy

sets (if speed is fast) where speed could be slow, medium, or fast; the degree of

truth value we have in a specific value (if we are only 0.9 sure that name is “John”,

then the truth value in that value is 0.9 and can be tested in a rule antecedent. Other

words that can be used in a rule antecedent are modifiers called hedges, and are

used to modify truth values. For example, if we have a fuzzy set called age that
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could take on values of young, middle-aged, or old, we can ask “if age is young”, but

can also ask “if age is somewhat young” or “if age is very young”. In this way, fuzzy

expert systems provide a very flexible syntax for rules compared to non-fuzzy expert

systems.

2.2.2 Admissible Data Types

Like most modern computer languages, FLOPS data are typed, and must be

declared. Data are stored in simple structures, like those in C programs, called

data elements; the individual structure elements are called attributes. Following is

a declaration of a data element name “MyData”. (Complete definition of fuzzy

sets and fuzzy numbers must await Chapter 3 on fuzzy mathematics.)

declare MyData
X int :integer
Y flt :floating point
Z str :character string
area fznum :fuzzy number
size fzset (Small Medium Large); :fuzzy set

In this data, declaration MyData is a memory element; X, Y, Z, area and size are

attributes.

In addition to the types above, FLOPS generates two other data types. Each attri-

bute of type int, flt, and str has an associated truth value, a measure of how sure we are

that the value of the attribute is valid. Truth values are system-furnished attributes,

accessed by appending. cf to the attribute name. Thus Y.cf is an attribute whose

value is the truth value level of attribute Y. In addition, each instance of a data

element has an identifying time tag, assigned in sequence as instances are created

or modified; the time tag is accessed as system-furnished attribute tt. Members of

the fuzzy set fsS, Small, Medium, and Large, are also attributes whose value is the

truth value that the member (e.g., Small) is a valid descriptor of something in the

real world. (Fuzzy data types and their use will be more fully described in Chapter 3.)

Although FLOPS does not at present implement them, arrays of the basic integer,

float and strings data types can also be useful.

“Membership functions” are a special type of data that will be discussed later in

this book.

2.2.3 Consequents

There is a great variety of consequent instructions available in fuzzy expert systems.

There are instructions for input of data and output of data and conclusions; for

modifying old data and creation of new data; and instructions to control the rule-

firing process itself. The most controversial instructions in a fuzzy expert system

are those that modify data and the truth values in data. The whole process of deriving
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new data and conclusions from given data is the inference process in logic; since

fuzzy logic is quite a new branch of mathematics, some of the inference methods

presented in this book are controversial. (However, they have all been tested in prac-

tice over the past 15 years.) Rules with consequent instructions that control the rule

firing process are called metarules in AI parlance, and are of great importance in an

inference process that involves several steps. (Most real-world problems require

multistep inference.)

FLOPS has about 70 different instructions, called commands. (We have just met

one FLOPS command, declare, which identifies a data declaration.) Any of these

instructions can be used in the consequent of a rule. One important command is

rule, which identifies the definition of a FLOPS rule. Since any FLOPS command

is legal in the consequent of a rule, a rule can generate other rules. FLOPS rules

can also generate data declarations.

Some typical FLOPS commands follow:

:output to screen:

write "Hello, World!\n";
message "Turn on ignition switch";

:creation of a data element:

make MyData ix = 3 fy = 3.1416 sz = "Check gasoline tank";

:input of data from a data file in FLOPS format:

transfer MyData from datafile.dat;

:transferring control to a different FLOPS program module;

open Program2.par;

:copying screen output to a disk file:

outfile MyOutput.out;

:Setting program trace level when debugging a FLOPS program:

debug 2;

The complete set of FLOPS commands is described in the help file manual.hlp,

available under the HELP menu when running FLOPS or the integrated develop-

ment environment TFLOPS.

2.3 DATA-DRIVEN SYSTEMS

It is perfectly obvious that rule (2.2), “if the light is green then cross the street”, and

rule (2.3), “IF speed is fast AND it is raining AND NOT windshield wipers on

THEN turn on windshield wipers, reduce speed” are not likely to be applicable in

the same situation. If one piece of data is that our subject is a pedestrian then

rule (2.2) might be applicable, and if the data is that our subject is NOT a pedestrian,
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then rule (2.3) might be applicable. This idea was extended more than 20 years ago

with the formulation of data-driven rules. If rules are data-driven, then they are

called into action whenever the rule antecedents are satisfied; the order in which

the rules are written has nothing to do with the order in which they are fired (con-

sequent commands executed). Data-driven languages are non-procedural. Years

ago, when computer programs were written on punched cards, we used to worry

about dropping a deck of cards and totally messing up the program. This was, of

course, because almost all common computer languages are not data-driven, but

are procedural; the order in which statements are executed depends on the order

in which they appear in the program. If we had had data driven languages, it

would not matter if we dropped the deck; the program would run OK anyhow.

Adapting to a non-procedural data-driven language requires a little work for compu-

ter programmers experienced in procedural languages.

2.4 RUN AND COMMAND MODES

FLOPS has two types of operational modes; command, in which FLOPS commands

are directly executed in the order in which they are encountered; and run, in which

FLOPS rules are fired.

FLOPS always starts out in command mode, reading its commands either from a

FLOPS program disk file or from the keyboard. Command mode is procedural;

commands are executed in the order in which they are encountered. FLOPS remains

in command mode until a run command is executed, placing FLOPS into run mode,

or until a stop or exit command terminates the FLOPS run.

In run mode, FLOPS rules are fired. Run mode is data-driven and non-procedural;

the order in which rules are written has nothing to do with the order in which they are

executed. FLOPS remains in run mode until no more rules are fireable; a halt

command is executed; a specified number of rule-firing steps has been carried out;

or until the FLOPS run is terminated by a stop or exit command. On leaving run

mode, FLOPS reverts to command mode unless the program has been terminated.

Exercise Hello1.fps. For years the most popular introductory program for a

language has been one that prints out “Hello, World!” to the monitor screen. We

will use two versions of a FLOPS Hello program. The first of these is executed

entirely in command mode. The program itself follows:

:Hello1.fps - simplest "Hello, World!" program.

message "Hello, World!";
exit;

FLOPS always starts in command mode. When we tell FLOPS to open a

program, it reads the program line by line, ignoring comments and executing com-

mands. FLOPS will remain in command mode until a run command is encountered.

We first open TFLOPS, then open file Hello1.fps in subfolder examples. Note

that the first line, a comment, uses a gray font. In the next line, “message” uses a
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blue font since it is a FLOPS command, and the string “Hello, World!” uses a red

font, the FLOPS color code for a character string. Finally, “exit”, another FLOPS

command, is also color-coded in blue.

To run Hello1, we click on “run” on the menu bar, then “run hello1.fps”. FLOPS is

now invoked, and opens the Hello1.fps file in command mode. The comment line is

ignored, as is the null line that follows, and the “message” command is read and exe-

cuted. Immediately a dialog box with the message “Hello, World!” is displayed. We

click the “OK” button, and FLOPS reads and executes the “exit” command. A ter-

mination dialog box is displayed, FLOPS terminates and we return to TFLOPS

with an error log “0 warnings, 0 errors” displayed at the bottom of the screen.

If you wish, you can display other messages by adding or changing FLOPS com-

mands. If you intend to modify the program, it is important to save it under another

name, such as “temp.fps” before any modifications are made. Click on the “Help”

menu bar item, then click on “Manual”, then select “Input/Output commands”.

Your two output options are “write”, which writes a message to the screen

without pausing, and “message”, which puts up a dialog box displaying the selected

text with “OK” and “Cancel” buttons.

It is easy to see that command mode is limited in its power, especially since there

are no program loops. Command mode is essential when setting up a FLOPS

program to run; in command mode a FLOPS program may be read, the data declara-

tions are implemented, rules are compiled, and initial data are set up. For the FLOPS

programmer, command mode is very important in program debugging, since FLOPS

has a number of commands especially for debugging. But the real work of an expert

system is done in run mode, illustrated by Hello2.fps.

Exercise Hello2.fps. Although very tiny, Hello2 has the elements of a non-trivial

FLOPS program: a data declaration, a rule, a command to create initial data, and

a “run” command to switch from command mode to run mode. Unlike Hello1,

Hello2 does its work in run mode.

:Rule-based "Hello, World!" program.

message "Compiling Hello2.fps;

declare Data output str;

:rule r0
rule (goal Write message to screen)
IF (in Data output = <Str>)
THEN message "<Str>";

make Data output = "Hello, World!";
message "Hello2 ready to run";
run;
exit;

20 RULE-BASED SYSTEMS: OVERVIEW

TEAM LinG - Live, Informative, Non-cost and Genuine !



As before, we invoke TFLOPS and open hello2.fps in the examples folder. After hel-

lo2.fps is loaded, we run it in the same way as we ran hello1.fps in the previous

exercise.

Flops starts running Hello2 in command mode, just as in running Hello1. As

before, the initial comment is ignored. The message command is executed, display-

ing the “Compiling Hello2.fps” message. Next, the data declaration is executed, and

the single rule is compiled. The initial instance of data element Data is created; this

instance of Data makes rule r0 fireable. After another message to the user, FLOPS

executes the “run” command and switches to run mode. The rule fires and executes

the consequent “message” command, displaying “Hello, World!” in a dialog box.

After rule r0 has fired, no more rules are newly fireable; rule r0 will not fire again

on the same data. We return to command mode, read and execute the “exit”

command, and return to TFLOPS.

2.4.1 Run Mode: Serial and Parallel Rule Firing

In data-driven expert systems, it often (even usually) happens that the data make two

or more rules concurrently fireable. In that case, the computer has two options. The

first option is taken by almost all non-fuzzy expert systems; a rule-conflict algorithm

decides which rule will be fired, and the rest of the fireable (but unfired) rules are

placed on a backtracking stack. After firing the selected rule, we look to see if

any rules are newly fireable. If so, the process is repeated, and again any fireable

but unfired rules are placed on top of the backtracking stack. If at some point no

rules are newly fireable, a rule is popped off the backtracking stack and fired; this

is called backtracking. This option is called sequential or serial rule firing mode.

mode or terminates the program.

The second option is used by most fuzzy systems. If the data make several rules

concurrently fireable, they are all fired, effectively in parallel. However, a new

problem can arise; if two or more rules attempt to modify the same data item in

different ways, a memory conflict occurs, and must be resolved by a memory conflict

algorithm. In expert systems that work with fuzzy sets, parallel rule firing is con-

siderably more efficient than serial rule firing, permitting faster speed, greater

clarity, and economy in the number of rules needed.

The choice between serial and parallel rule-firing modes can depend on the nature

of data input. If information must be elicited from the user in a context-dependent

fashion, so that each question to be asked depends on the answer to the previous

question, serial rule firing is indicated. (It may also be useful in the depth-first

search of a decision tree, or in the emulation of deductive reasoning, although

one should first make sure that a parallel program will not work better.) A serial

program can be much slower than an equivalent parallel program, since systems

overhead is very much higher. Parallel programming is indicated if data are supplied

to the program without user input from the keyboard, as in real-time on-line oper-

ation, or when the data are input from a disk file. In general, parallel programming

is to be preferred to serial programming, unless there is a specific reason why serial
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programming is indicated. Parallel FLOPS programs have a .par suffix; serial

programs have a .fps suffix. For example, programs badger.fps and auto2.fps ask

a series of questions of the user, and the next question to be asked cannot be

chosen until the previous question has been answered, and serial rule firing is

employed. Program echo.par takes its input from a disk file prepared by a previous

C program; program schizo.par asks a fixed sequence of questions; and program

pac.par takes its input on-line in real-time from a patient physiologic monitor; all

these programs use parallel rule firing.

The situation may arise when a combination of these modes is desirable; perhaps

serial mode to obtain necessary information, and parallel mode to draw conclusions

from these data. The FLOPS commands serial and parallel permit switching from

one mode to the other.

2.4.2 Checking which Rules Are Fireable: The RETE Algorithm

In both serial and parallel rule-firing modes, we first check to see which rules the

data make fireable. In serial mode only, we select a rule for firing using a rule-

conflict algorithm. Next, we fire our rule(s) and place any other fireable rules on

the backtracking stack. We use a memory-conflict algorithm to decide whether

memory-modifications are permitted. This process is then repeated.

Data-driven systems spend most of their time finding out which rules are fireable.

An obvious way to check for rule fireability is to set up a loop over all rules, then

inside this loop set up another loop over the data too see if a rule is fireable.

This can be terribly time-consuming. To reduce this time and speed up programs,

Charles Forgy devised the RETE algorithm, which speeds up this process

considerably (Forgy, 1982). Since in parallel programs the rules have to be

scanned for fireability less often, parallel rule firing tends to run considerably

faster than serial rule firing. No rule conflict algorithm is needed.

2.4.3 Serial Rule Firing

Serial rule firing amounts to a depth-first search of a decision tree. Figure 2.1

illustrates the dynamics of rule firing in serial mode. At the start of the program,

rules R1, R2, and R3 are concurrently fireable; R10 through R15 represent goal

states, and will fire when we have reached a conclusion.

At the start of the program, rules R1, R2, and R3 are concurrently fireable. Our

rule conflict algorithm selects R1 for firing, and R2 and R3 are placed on the back-

tracking stack with R2 on top. R1 is fired, making R4 and R5 fireable. R4 is selected

for firing, and R5 placed on top of the backtracking stack, which now holds R5, R2,

and R3. R4 is fired, but does not make any rules newly fireable; R5 is popped off the

backtracking stack and fired. The backtrack stack now holds R2 and R3. R5 is fired,

but does not make any rules newly fireable; R2 is popped off the backtracking stack,

which now holds only R3; R2 is now fired. R2 makes R6 and R7 newly fireable; R6

is selected, and R7 added to the backtrack stack that now holds R7 and R3. R6 makes

R12 newly fireable; we select R12, and fire it. No rules are newly fireable; our goal
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state has been reached, and we return to command mode. The important feature that

serial rule firing requires is the rule conflict algorithm (Jackson, 1999), to decide

which of two or more newly fireable rules will be selected for firing. We first con-

sider rule-conflict algorithms designed for crisp 0-1 logic. There are several points to

be considered when selecting a rule for firing. These include refractoriness, which

includes the obvious requirement that a rule should not be permitted to fire twice on

the same data; recency, which considers how recent they are in the rule antecedent;

and specificity, which considers the complexity of the antecedent. All commonly

used strategies use refractoriness first. The LEX strategy then sorts by recency;

and the MEA (Means-End Analysis) strategy is a development of the LEX strategy

(Jackson (1999), p. 87) to include specificity.

FLOPS rule-conflict strategy first ranks the rules for firing by the truth value that

the rule antecedent is true combined with the truth value that the rule itself is valid,

the posterior confidence ,pconf.. If there is a tie among the first-ranked rules

after this step, FLOPS then employs the MEA algorithm. If there is still a tie for

first, one of the tied rule is randomly selected. The backtracking stack is maintained,

with fireable but unfired rules being placed on top of the stack and, if no rules are

newly fireable, rules are popped off the top of the stack and fired.

2.4.4 Parallel Rule-Firing

Parallel mode amounts to a breadth-first search of a decision tree, and is a bit simpler

than the serial mode. If several rules are concurrently fireable, we fire them all. Since

all fireable rules are fired, there is no backtracking. Parallel programs are organized

by rule blocks, and these blocks are turned on or off for firing by metarules. In AI

parlance, metarules are rules whose purpose is to control the sequence in which

program sections are invoked. Metarules may enable or disable individual rules,

blocks of rules, or entire programs, and are essential in parallel programs. Within

those blocks of rules that are enabled, rule firing is data-driven and non-procedural.

Metarules furnish procedural organization of enabled rule blocks and programs.

Rule firing in a parallel FLOPS program then consists of a procedurally organized

sequence of non-procedural steps.

Parallel rule-firing is shown in Figure 2.2.

Figure 2.1 Rule firing sequence in serial mode, illustrating backtracking.
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2.5 FORWARD AND BACKWARD CHAINING

An expert system rule may be formulated as

if A then B (2:4)

where A is a set of conditions on data and B is a set of instructions to be carried out if

the rule is fired. In forward chaining, that sequence is followed. The rules are exami-

ned to see which rules are made fireable by the data, that is, A is satisfied, and a rule

or rules selected for firing. When the rule is fired, the set of instructions B is

executed. This is the way most rule-based expert systems work, including FLOPS.

In backward chaining, a different sequence is followed. In backward chaining, we

specify what conclusion we would like to reach, that is, we specify B. We find a rule or

rules that have the desired consequent, and look at the antecedent A to see what the

data must be to satisfy A. Now we find out how those data can be established, and

look for rules that have those data as a consequent, or input data from a user to see

if the antecedent can be satisfied. In backward chaining we work backward from

goals to data; in forward chaining we work forward from data to goals.

Some systems permit both forward and backward chaining. Forward-chaining

systems can emulate backward chaining, but it is hard for backward-chaining

systems to emulate forward chaining. FLOPS, like CLIPS, Fuzzy CLIPS, and

OPS5, is a forward chaining system. (Sample program badger.fps illustrates the

emulation of backward chaining in FLOPS.)

2.6 PROGRAM MODULARIZATION AND

BLACKBOARD SYSTEMS

It has been many years since anyone attempted to write an expert system that was

not broken into modules. A most important step in structuring modularization of

Figure 2.2 Rule-firing sequence in parallel mode.
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expert system was taken at Carnegie-Mellon University in 1980 with the construc-

tion of the HEARSAY programs, designed to recognize and understand speech

(Jackson, 1999, Chapter 18).

The HEARSAY project was modularized into a number of individual programs,

each performing different tasks. The programs communicated with each other by

writing and reading data to a blackboard; in modern PCs the blackboard is a hard

or RAM disk, and each program writes or reads files (usually in relational data

base format) to the blackboard. A special blackboard monitor program watches

what is on the blackboard and schedules the individual programs so that the task

proceeds according to plan.

The elements of a blackboard system are then individual programs; the black-

board itself, with a common general format for the data files; and provision for sche-

duling the various programs to reach the desired goal. The individual programs may

be expert subsystems, but since there are some tasks for which expert systems are ill-

suited, provision should be made to incorporate programs written in any language.

The scheduling task may be done by a special blackboard monitor, or may be

accomplished by metarules in the individual expert systems.

FLOPS employs a very simple basic blackboard system, with the hard disk

serving as the physical blackboard. Data are normally written to the blackboard in

a simple flat-file relational format, in which the first field in each record identifies

the data element whose attribute values the record holds. Program sequencing is

accomplished by metarules; provision is made for a FLOPS program to call

another FLOPS program, or to call programs written in any language and stored

on disk as executable program files.

2.7 HANDLING UNCERTAINTIES IN AN EXPERT SYSTEM

There are many sources of uncertainty in data. There is, of course, imprecision in

numerical measurements (we might report a speed as 60 miles/h when it is actually

62.345. . . . There is also uncertainty as to facts (I think her name is Joan, but I’m not

sure), and ambiguous terms (He was going fast). There are several ways of handling

uncertainties in an expert system, and of combining uncertainties (He is heavy,

short, and middleaged). In FLOPS, we represent uncertainties as truth values,

how sure we are that a datum or a rule is valid. Ways of expressing and combining

uncertainties include probability; fuzzy logic; Bayes’ theorem; and Dempster–

Shafer theory, each with their own advantages, disadvantages and problems.

There are two simple ways of representing uncertainties. In the first, a single

number (usually, but not always, between 0 and 1), called variously certainty

factor, confidence, or truth value represents how sure we are that the data to

which the factor is attached is indeed valid. In the second, two numbers are attached

to a value, one representing a lower limit of certainty (called belief in Dempster–

Shafer theory and necessity in fuzzy mathematics) and the second representing an

upper limit (called plausibility in Dempster–Shafer theory and possibility in fuzzy
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mathematics). The lower limit can represent the extent to which the data support a

value, and the upper limit can represent the extent to which the data refute a value.

When a single number is used to represent uncertainty it represents the extent to

which the data support a value; if we believe the value to be invalid, its truth value

would be 0; if we believe a value to be true, its truth value would be one. It is not

immediately clear how complete ignorance should be represented. FLOPS is pessi-

mistic; if it does not know anything about a value, FLOPS assumes it to be false.

When two numbers are used to represent uncertainty, we have a clear way of

unambiguously representing complete ignorance. If we do not know anything

about the truth of a value, its lower limit (say belief) is 0, since at this point no

data have supported the value; its upper limit (say plausibility) is 1, since no data

have refuted the value. As we continue to reason, we would expect that the two

values would move closer together.

Clearly, the two-value mode of representing uncertainties has an intellectual

appeal, and a substantial body of theory called interval logic has grown up around

it. However, most of us do not usually reason in this complicated a fashion, and

FLOPS is content to represent uncertainty as a single number (which we sometimes

call a truth value), sometimes a truth value and sometimes (when dealing with fuzzy

sets) a grade of membership. All these terms represent pretty much the same thing;

our truth value that a datum is valid. FLOPS also prefers to use fuzzy logic for com-

bining uncertainties; we cannot present a totally convincing argument for this, but

fuzzy systems theory seems to supply the tools that we need. Especially important

is the ability of fuzzy systems theory to deal with ambiguities and contradictions,

where fuzzy sets provide the only clean mathematical framework.

In its present incarnation, FLOPS represents truth values as integers between 0

and 1000, rather than as decimal fractions between 0 and 1.

2.8 SUMMARY

Knowledge may be viewed as factual, information that we have stored in memory,

or procedural, skills in using the data at hand. In an expert system, factual knowledge

is stored as data held in the computer’s memory, and procedural knowledge is stored

as rules. Production rules are written as “IF (the data satisfy the specified conditions)

THEN (perform the specified actions)”. The IF part is the rule antecedent; the THEN

part is the rule consequent. The antecedent is a fuzzy logical proposition, that is, a

statement regarding data whose truth value may be determined. If a rule’s antece-

dent is sufficiently true, and the rule is activated, the rule is said to be fireable.

We are particularly interested in data-driven systems. In such systems, the fire-

ability of a rule is determined by whether the data satisfy the antecedent and by

whether the rule has been activated, but does not depend on the position of the

rule in the program. Systems in which whether or not a statement will be executed

depends on the position of the rule in a program are called procedural; nearly all

common computer languages (Cþþ, Fortran, Basic, etc.) are procedural. Data-

driven systems are non-procedural.

26 RULE-BASED SYSTEMS: OVERVIEW

TEAM LinG - Live, Informative, Non-cost and Genuine !



The interaction between rules and data that occurs when running a fuzzy expert

system is considerably more complex than the interaction between statements and

data in a procedural language such as C or Fortran. In a rule-based systems, there

is a sequence of events: data make rules fireable, and rules are fired creating new

or modified data; these data make other rules fireable, and so on. Some of the rules

to be fired may serve to control the fireability of individual rules, blocks of rules,

or even entire programs; these are called metarules. The precise nature of the data-

rules-data- sequence depends on whether sequential or parallel rule-firing is in effect.

Parallel rule-firing is simpler in concept than sequential rule-firing. In sequential

rule firing, a single rule is picked for firing from all concurrently fireable rules; the

rest are stacked for firing if no rules are newly fireable, the backtracking process. In

parallel rule firing, all fireable rules are effectively fired concurrently; there are no

fireable but unfired rules for backtracking. If information is to be elicited from the

user in a context-dependent fashion, so that the next question to be asked depends

on the answer to the previous question, sequential rule-firing is appropriate; other-

wise, parallel rule-firing is usually to be preferred.

A FLOPS program is made up of a series of commands drawn from a list of about

80. FLOPS programs have two operational modes: command mode and run mode. In

command mode, FLOPS executes commands procedurally, one after another, but

rules are not fired. In run mode, FLOPS fires rules, that is, executes the commands

in the consequents of fireable rules. If no more rules are fireable, FLOPS reverts to

command mode. In command mode, FLOPS operates procedurally, executing com-

mands in the sequence in which they appear in the program; but in run mode, FLOPS

is data-driven and non-procedural.

FLOPS begins in command mode, reading a FLOPS program and executing its

commands in sequence. When a “rule” command is encountered, the rule antecedent

is compiled and the rule entered into FLOPS memory, but the rule is not fired. When

a “run” command is encountered, FLOPS switches from command mode to run

mode, and begins firing rules. If no more rules are fireable, FLOPS reverts to

command mode. (There are also other ways to switch from run to command mode.)

Data-driven production systems can involve much systems overhead in determi-

ning which rules are newly fireable. By keeping track of partial matches between

rule antecedents and data, the Rete algorithm by Charles Forgy reduces this over-

head dramatically. Nevertheless, this systems overhead can still constitute a real

problem. Parallel rule firing reduces systems overhead still further.

Expert systems may be forward or backward chaining. In forward chaining

systems, we reason from antecedent truth to consequent truth; that is, we reason

from facts in the rule antecedent that we know to be true to establish new facts

whose truth is implied by the antecedent. Backward chaining reverses this; we

attempt to find facts to establish the truth of some goal state. It is quite possible

to emulate backward chaining with a forward chaining system.

Modularization of expert system programs is essential for both their construction

and their debugging, but is even more important conceptually. At the lowest level,

modularization is accomplished by assigning rules to blocks, so that we can view the

program organization in terms of the organization of the rule blocks. Metarules are
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used to activate and deactivate rule blocks. At a higher level, modularization

can occur as complete programs, which may be other FLOPS programs or may

be procedural language programs. Communication among these programs can be

accomplished by a blackboard. Blackboard systems may be quite complex, but

the essential feature is a common area where the different programs involved can

exchange information in a common format.

All fuzzy expert systems and some expert systems not based in fuzzy logic have

the problem of representing uncertainties. Most often, a single number between 0 and

1 called truth value, certainty factor, or truth value represents how sure we are that a

datum is valid. Sometimes two numbers are used; a lower number representing the

extent to which other data support the validity of a datum, and the upper representing

the extent to which other data fail to refute the value of a datum. The lower number is

called necessity in fuzzy systems theory and belief in Dempster–Shafer theory; the

lower is called possibility in fuzzy theory and plausibility in Dempster–Shafer

theory. The two-valued uncertainty theory is sometimes called interval logic.

2.9 QUESTIONS

2.1 We have said that a knowledge base consists of data and rules. Does this give

a complete representation of knowledge?

2.2 How should we handle a problem that requires a lot of numerical processing?

2.3 What is the difference between a rule antecedent and a rule consequent?

2.4 What data types should be available in a fuzzy expert system?

2.5 Can the consequent of a rule contain an instruction to create a rule?

2.6 Are there any restrictions on what type of instruction can be included in a rule

consequent?

2.7 What is a metarule?

2.8 How do procedural and data-driven programs differ?

2.9 What is the difference between run and command operational modes?

2.10 Under what circumstance is serial rule-firing mode desirable?

2.11 In an expert system, we have goals we wish to reach and data from which to work.

How are goals and data related in forward chaining? In backward chaining?

2.12 What purpose does a blackboard system serve?

2.13 How are uncertainties represented in FLOPS?
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3 Fuzzy Logic, Fuzzy Sets, and
Fuzzy Numbers: I

This chapter is intended to prepare the reader for the basics in fuzzy logic and fuzzy

sets that will appear in the rest of the book. We start with classical logic and how

fuzzy logic generalizes classical logic. We then discuss fuzzy propositions, fuzzy

sets, fuzzy relations, fuzzy comparisons among data, fuzzification, and defuzzifica-

tion. More advanced fuzzy mathematics are discussed in Chapter 4. In the following

sections, we will deal with both single-valued and multivalued data. We will denote

a single number from the real line as a scalar number.

3.1 CLASSICAL LOGIC

Fuzzy logic notation and operations are based on classical logic and the pro-

positional calculus, the modern form of notation for classical logic; we first

review their foundations.

According to the Random House unabridged dictionary of the English language,

logic is “the science that investigates the principles that govern correct or reliable

inference”. The basic element of logic is a proposition, a statement in which some-

thing is affirmed or denied, so that it can therefore be characterized as either true or

false. A simple proposition might be “the president’s first name is William” or “the

president’s age is 48”. A more complex proposition is “the president’s first name is

William AND his age is 48”. Surely, we can determine if these propositions are true

or false. In classical logic, propositions are either true or false, with nothing in

between. It is often conventional to assign numerical values to the truth of pro-

positions, with 1 representing true and 0 representing false. Important principles

of classical logic are the Law of the ExcludedMiddle, which states that a proposition

must be either true or false, and the Law of Non-Contradiction, with states that a

proposition cannot be both true and false at the same time. We will denote prop-

ositions by capital letters P, Q, R, . . . . The truth value of proposition P will be

written tv(P), or simply P if the context makes it clear what is meant. In two-

valued logic, truth values must be either 0 (false) or 1 (true).

We will be concerned with two kinds of truth values (Dubois and Prade, 1988).

First, we define possibility to be the extent to which the available data fail to refute
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a proposition. Possibility measures the extent to which a proposition might be true.

In the absence of any data to the contrary, the possibility of a proposition is one. (An

analogous term is plausibility.) Second, we define necessity to be the extent to which

the available data support a proposition. Necessity measures the extent to which a

proposition must be true. In the absence of any supporting data, the necessity of a

proposition is zero. Analogous terms are credibility or belief.

An example: Suppose that we wish to establish the truth of proposition

R. Proposition P supports the truth of proposition R; in the lack of other knowledge,

the necessity of R is the truth value of P. On the other hand, proposition Q refutes R;

the possibility of R is (NOT Q).

Since this book is concerned with constructing programs to return answers to real-

world problems, we will be concerned primarily with necessity; we will want to reach

conclusions that are supported by data, not conclusions that might possibly be true.

The truth value of complex propositions is obtained by combining the truth values

of the elemental propositions, which enter into the complex proposition. The most

common operators (called connectives) are NOT, AND (A AND B is true if both A

and B are true) and OR (A OR B is true if either A or B or both are true.)

In this chapter, we will be concerned with truth-functional operators. An operator is

called truth-functional if the truth value of the resulting proposition is determined

solely by the truth values of its operands. That is, the truth value of (say) A AND

B is determined only by the truth values of A and B, and no other information is

required. Negation, written NOT P, is the simplest example of a truth-functional oper-

ator; the truth value of NOT P depends only on the truth value of P, and not on any-

thing else. (For classical logic, this seems obvious; for fuzzy logic, it is not so obvious,

as we shall see later in Chapter 4, Section 4.2.2.) We will use throughout this book

tv(NOT P) ¼ 12 tv(P). The two other most common truth-functional operators,

also called connectives, are AND and OR. (As we shall see later, these operators

are not necessarily truth-functional, although this is seldom admitted!) A set of

truth-functional operators that can generate all the others is called a primitive set of

operators. It is well known in propositional calculus that all the other truth-functional

operators can be constructed from either the NOT and AND or the NOT and OR oper-

ators. Computer scientists, electrical engineers, and logicians use different sets

of primitive connectives. The NAND operator is defined as A NAND B ¼ NOT

(A AND B), and from the NAND operator alone all other logical operators may be

constructed; electronic engineers, often take NAND as a primitive, since it is easily

implemented in circuitry. Logicians sometimes take the implication operator (A

IMPLIES B, defined below), as a member of the primitive set; all other logical oper-

ators can be defined from the NOT and IMPLIES operators. Most computer languages

furnish AND, OR, and NOT as basic operators. Since our interest is in expert systems

implemented in a computer language, we will take AND, OR, and NOT as basic.

3.1.1 Evaluating A AND B and A OR B

The evaluation of tv(P AND Q) and tv(P OR Q), given truth values for P and Q, is

shown in Table 3.1, a presentation known as a truth table.
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There are many formulas that can be written to compute algebraically the truth of P

AND Q and P OR Q from the truth values for P and Q, all of which will give the

same answers as listed in Table 3.1 for classical (crisp) truth values of 0 or 1. (In

fuzzy logic, these formulas may give different answers!) Here, we list only three

of these formulas for P AND Q, all equivalent for classical (but not for fuzzy)

logic. In this and succeeding chapters, we may use the symbol tv(A) to indicate

the truth value of A, or may simply use A to denote both a proposition and its

truth value. For all fuzzy logic operators,

NOT P = 1–P
P AND Q:

Zadeh operator:

P AND Q ¼ min(P, Q) (3:1)

Probabilistic operator, assuming independence:

P AND Q ¼ P � Q (3:2)

Bounded difference operator:

P AND Q ¼ max(0, Pþ Q� 1) (3:3)

Just as there are many formulas for computing P AND Q, there are also many ways

of computing P OR Q, which will all give the same result as in Table 3.1 for classical

logic, but that are not equivalent for fuzzy logic. We list three of these in (3.4)–(3.6):

P OR Q:

Zadeh operator:

P OR Q ¼ max(P, Q) (3:4)

Probabilistic operator, assuming independence:

P OR Q ¼ Pþ Q� P � Q (3:5)

Bounded sum operator:

P OR Q ¼ min(1, Pþ Q) (3:6)

TABLE 3.1 Truth Table for AND and OR Logical Operators

P Q P AND Q P OR Q

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 1
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Each formula for P ANDQ has a corresponding formula for P OR Q, called a dual

operator. In the above, (3.1) and (3.4) are a dual pair, as are (3.2) and (3.5), and also

(3.3) and (3.6). If the NOT and AND operators are chosen as primitives, we can

derive the OR operator as P OR Q ¼ NOT(NOT P AND NOT Q); if the NOT

and OR operators are taken as primitive, we can derive the AND operator from

De Morgan’s theorems, given in (3.7) and (3.8):

P AND Q ¼ NOT(NOT P OR NOT Q) (3:7)

or, conversely,

P OR Q ¼ NOT(NOTP AND NOTQ) (3:8)

In this way, the formula (3.4) can be derived from (3.1); formula (3.5) can be

derived from (3.2); and formula (3.6) can be derived from (3.3). Dual operators

satisfy these relationships.

Actually, (3.1) and (3.3), (3.4), and (3.6) represent extremes in the range of fuzzy

operators that can be derived from probability theory, and there are similar operator

pairs for special purposes that go even beyond these extremes. The problem we now

face is—which operator pair do we choose as a default?

Fortunately, there are two approaches to this choice, both of which agree.

First, there are many years of experience by many workers in the field who have

chosen the Zadeh operators (3.1) and (3.4) with great success.

Next, there is a theoretical basis. Truth values may be derived from probability

theory as the averages of expert binary true–false judgments (Klir and Yuan,

1995, p. 283). If the experts judge two rather than one event, it is likely that their

judgments would be strongly positively associated; under this condition, the

Zadeh operators are the correct theoretical choice. Of course, under other conditions

other operators might be better (Buckley and Siler, 1999).

Exercise AndOrNot—Check on Logic Formulas for AND, OR, and NOT. In this

exercise you will calculate NOT A, A AND B, and A OR B from the above for-

mulas. To run the exercise, invoke TFLOPS, load program AndOrNot.fps, and

run it as you did the programs in Chapter 2 exercises. AndOrNot.fps will ask you

to enter truth values a and b, and will then calculate NOT A, and then calculate

A AND B and A OR B by all three sets of formulas above; min-max logic, probabil-

istic logic and bounded sum/difference logic. To quit the program, enter a negative

truth value for b.

We suggest that you first check that for crisp (not fuzzy) logic (truth values 0 or 1),

all three logics give the same answers. Then try truth values between zero and one,

anticipating fuzzy logic, and see what answers the three logics give. Rule r0 in

AndOrNot.fps uses a truth value test. The antecedent (in Data a.cf ¼ 0) checks

that the truth value of a in data element Data is zero. This is the case if no value

is currently assigned to attribute a. (Note that truth values of attributes are also

attributes.)
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In rule r2, AndOrNot.fps adds modification of a data element and FLOPS’

calculator to the available tools. Consider the consequent command

in 1 Zand = (min(<A>, <B>)) Zor = (max(<A>, <B>))

This command will modify attributes in the first data element in the antecedent

(in 1). Attribute Zand will be set to the minimum of variable ,A. and variable

,B. by FLOPS’ calculator, called by the open parenthesis after “Zand ¼ ”, and

closed by the corresponding close parenthesis. min() and max() are among the func-

tions supplied by the calculator.

Rule r3 sets all the truth values in Data to zero by the simple expedient of deleting

the old instance and creating a new instance in which no attri-
butes have been assigned values.

:Exercise AndOrNot.fps

message "Compiling AndOrNot.fps";
declare Data
a flt :truth value a
b flt :truth value b
Nota flt :truth value of NOT a
Zand flt :a AND b using Zadeh logic
Zor flt :a OR b using Zadeh logic
Pand flt :a AND b using probabilistic logic and

independence
Por flt :a OR b using probabilistic logic
Band flt :a AND b using bounded logic
Bor flt; :a OR b using bounded logic

:rule r0
rule (goal Input a and b truth values)
IF (in Data a.cf = 0)
THEN

write "Input a",
read 1 a,
write "Input b (negative to quit)",
read 1 b;

:rule r1
rule (goal Quit if b negative)
IF (in Data b < 0)
THEN exit;

:rule r2
rule (goal Calculate Nota, aANDb, aORb by various
multi-valued logics)
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IF (in Data a = <A> AND b = <B> AND Nota.cf = 0 AND b > = 0)
THEN

in 1 Nota = (1 - <A>),
in 1 Zand = (min(<A>, <B>)) Zor = (max(<A>, <B>)),
in 1 Pand = (<A> * <B>) Por = (<A> + <B> - <A> * <B>),
in 1 Band = (max(0, <A> + <B> - 1)) Bor =

(min(<A> + <B>, 1));

:rule r3
rule (goal Print results and try again)
IF (in Data Nota = <NOTA> AND Zand = <ZAND> AND Zor = <ZOR>

AND Pand = <PAND> AND Por = <POR> AND Band = <BAND> AND
Bor = <BOR> AND a = <A> AND b = <B>)
THEN

write "a <A> b <B>\n",
write "Min-max Zadehian logic\n",
write "a AND b <ZAND> a OR b <ZOR> NOT a <NOTA>\n",
write "Probabilistic logic\n",
write "a AND b <PAND> a OR b <POR> NOT a <NOTA>\n",
write "Bounded sum logic\n",
write "a AND b <BAND> a OR b <BOR> NOT a <NOTA>\n\n",
delete 1,

make Data;
message "Ready to run";
run;

It is easy to see that rule-based systems may not be optimal for efficient numerical

computation. By using the advanced feature of recursion, we can solve differential

equations, compute factorials, and the like. (Recursion here means computation

when one or more rules or rule blocks makes itself refireable until some goal is

reached.) But if heavy numerical computation is needed, it is often better to do

this in a more numerically oriented language like C or FORTRAN, and to use a

blackboard system for inter-program communication and control.

3.1.2 The Implication Operator

Another basic truth-functional operator used in fuzzy logic is logical implication,

written P implies Q, P ! Q or IF P, then Q. Table 3.2 is the truth table for

P ! Q. Three different methods for determining tv(P ! Q), among many other

methods listed in Klir and Yuan (1995, p. 309), are

tv(P ! Q) ¼ 1 if tv(P) � tv(Q), else tv(P ! Q) ¼ 0 (3:9)

tv(P ! Q) ¼ min(1, 1� tv(P)þ tv(Q)) (3:10)

tv(P ! Q) ¼ max(1� tv(P), min(tv(P), tv(Q))) (3:11)
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Equation (3.11) may also be expressed in terms of OR and NOT as

P ! Q ¼ (NOT P) OR Q (3:12)

The classical truth table for P ! Q is shown in Table 3.2.

The reader will probably find it difficult to accept that if P is false, P ! Q is true

whether Q is true or false. Note that formal logic is not concerned with objective

truth in the ordinary sense of the word, but with consistency between premises

and conclusions. P being false is consistent with Q being true or false, since if P

is false we have no idea what Q might be. P ! Q does not only mean that if P is

true, then Q is true; it is a measure of the consistency of the truth value of P with

the truth value of Q. (Logicians have had no trouble with this for a very long time!)

Note that the implication operator, of its very nature, returns a possibility, not a

necessity. This is clear when we look at truth table 3.2 for the classical implication

operator P ! Q, where 0 ! 1 is true. Clearly, if the truth value of P is zero, we

cannot conclude that this requires the truth value of Q to be one, as would be the

case with necessity; on the other hand, if P is false, the truth value of Q might be

one for all we know, as is the case with possibility. For this reason, the implication

operator is of little or no use in a fuzzy reasoning system based on necessity; it is

included here because texts of fuzzy theory pay considerable attention to it.

Classical logic now continues using NOT, AND, OR and ! to derive other con-

nectives and prove theorems about disjunctive normal forms, various sets of primi-

tives, and so on. An important tool in classical logic for deriving new propositions

from old is the modus ponens, which can be written

if P AND (P ! Q) then Q (3:13)

which can be read “If P is true and P implies Q then Q is true”. Note that the classical

modus ponens employs the implication operator.

The formulation of the modus ponens in (3.13) can be (and has been) misleading,

because of its strong resemblance to a rule in a rule-based language. However, note

that in the modus ponens and its counterpart, the fuzzy modus ponens, discussed in

Chapter 4, Section 4.3, both the antecedent (if . . .) and the consequent (then . . .) are

TABLE 3.2 Truth Table for Logical Operator P

Implies Q

P Q P implies Q

0 0 1

0 1 1

1 0 0

1 1 1
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logical propositions, and the resulting truth values are possibilities rather than

necessities. In a useful rule, we employ necessities rather than possibilities.

This means that the fuzzy modus ponens that employs an implication operator is

not applicable to a rule-based system such as we are describing in this book.

Exercise Imply.fps: Evaluating Implications. Program Imply.fps calculates the

truth value of using the fuzzy implication operators given in (3.7)–(3.9), and for

arbitrary truth values for P and Q. As before, run TFLOPS and load Imply.fps

from folder Examples. First, check for crisp values of P and Q to make sure the for-

mulas give the classical values of the implication for crisp inputs. Then check for

values of P and Q between zero and one. It will be very quickly obvious that the

different formulas are not equivalent, but can produce different values for the

truth value of the implication.

When running Imply.fps, try both P and Q ¼ 0. In this case, for all fuzzy impli-

cation operators that reduce to the classical values for crisp operands, the truth value

of P ! Q is 1. This can be interpreted as “If we don’t know anything, then anything

is possible.”

If we use the implication operator to evaluate the truth value of the consequent of

the rule “if P then Q”, we would conclude that Q is true. In other words, the implication

operator returns the possibility that Q might be true, judging from that rule alone. In

fuzzy math terms, the implication operator returns the possibility that Q might be

true, rather than the necessity of Q being true. In expert systems that assign a single

truth value to data, this could be seriously misleading; in such expert systems, we

would ordinarily expect a truth value to reflect the extent to which the data support

a conclusion, rather than the extent to which the data fail to refute a conclusion.

The problem is further complicated by the number of fuzzy implication operators

available (Klir and Yuan, 1996 list 14), and the lack of any clear guidelines as to

which fuzzy implication one should use (Klir and Yuan, 1995, p. 312), “To select

an appropriate fuzzy implication for approximate reasoning under each particular

situation is a difficult problem”. In general, however, if any implication is employed

to evaluate a rule, if the antecedent is false the rule will always be fireable; if the

antecedent is true the rule may or may not be fireable, depending on the particular

implication operator chosen. If the antecedent has truth value 1 and the prior truth

value of the consequent is 0, the rule will never be fireable no matter what impli-

cation operator is chosen.

All these facts lead us to conclude that the implication operator is of dubious

value in a fuzzy expert system.

3.2 ELEMENTARY FUZZY LOGIC AND FUZZY PROPOSITIONS

Like classical logic, fuzzy logic is concerned with the truth of propositions.

However, in the real world propositions are often only partly true. In addition, we

commonly use terms, which are not sharply defined. It is hard to characterize the

truth of “John is old” as unambiguously true or false if John is 60 years old.
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In some respects John at 60 is old being eligible for senior citizen benefits at many

establishments, but in other respects John is not old since he is not eligible for Social

Security. So, we should allow the truth value of (John is old) to take on values in the

interval [0, 1], not just 0 or 1.

We shall use the term “truth value” many times in this book; let us define it now.

The truth value of a proposition is a measure in the interval [0, 1] of how sure we are

that the proposition is true, that is, consistent with its constituent elements. Not only

propositions have truth values; data have truth values associated with them, a

measure of the extent to which the values of the data are valid; rules have truth

values associated with them, a measure of the extent to which the rule itself is

valid. In general, then, the truth value of (something) is a measure in [0, 1] of the

validity of (something).

As in classical logic, a fuzzy proposition is an assertion whose truth can be tested.

Most such assertions are comparisons between observed and specified data values.

Unlike classical logic, a fuzzy proposition may be partly true. There are two reasons

why a fuzzy proposition may be only partly true. First, the data being tested may be

only partly true, that is, may have truth values less than 1; second, the comparison

itself may only hold in part, so that the truth value of a comparison may be less than 1.

The structure of fuzzy propositions may be considerably more complex than the

structure of crisp (non-fuzzy) propositions. In crisp propositions, data are seldom

multivalued, and their truth values (if the data exist) are always 1. Crisp comparisons

are all Boolean, returning either 0 or 1. But in fuzzy propositions, single-valued data

are accompanied by truth values. Data in a fuzzy system may also be multivalued, as

we shall see in Section 3.3.1 on fuzzy sets; and truth values may also be multivalued,

as we shall see in Section 3.3.2 on fuzzy numbers. Comparisons among data com-

monly return truth values other than 0 or 1. Fuzzy propositions will be discussed in

more detail in Chapter 4; for the present, let us be content with the simple fact that

fuzzy propositions may have truth values anywhere between 0 and 1 inclusive.

Let us seewhat changes there are, if any, infinding the truth values ofNOTP, PAND

Q, P OR Q, and P ! Q when the truth values can be any number between 0 and 1.

First of all, tv(NOT P) ¼ 12 tv(P) will always hold in this book.

To compute tv(P AND Q) we cannot use a table like Table 3.1 since the possible

values of tv(P) and tv(Q) are now infinite. We must use formulas like equations (3.1)–

(3.3). In fuzzy logic, we can use any one of these formulas to determine tv(P AND Q).

However, although they all agree when the truth values are 0 or 1, one can now

produce different results for truth values in the interval [0, 1]. For example, if

tv(P) ¼ 0.8 and tv(Q) ¼ 0.5, then equation (3.1) gives 0.5 for tv(P AND Q) but

equation (3.2) produces a value of 0.4. Methods of getting tv(P AND Q) in fuzzy

logic are discussed in Section 4.1 when we define what are called t-norms.

For tv(P OR Q) in fuzzy logic, we can use formulas like equations (3.4)–(3.6);

such methods are called t-conorms.

In fuzzy logic, any algorithm that gives Table 3.2 when the truth values are 0 or 1

may be used to compute tv(P ! Q) if the truth values are now in [0, 1]. So,

equations (3.9)–(3.11) can be employed to obtain tv(P OR Q) for tv(P) and tv(Q)

since both are in [0, 1].
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Up to now we have only looked at simple propositions. Consider the compound

proposition

P AND (Q OR NOT R) (3:14)

To obtain its truth value let us use the logic originally proposed by Lotfi Zadeh in

his seminal 1965 paper on fuzzy sets: min–max fuzzy logic, which means min for

AND, equation (3.1), and max for OR, equation (3.4). The truth value of the pro-

position in equation (3.10) is then

min( p, max(q, 1� r)) (3:15)

3.3 FUZZY SETS

Let X be a collection of objects called a universal set. The sets we wish to discuss

will all be subsets of X.

To explain the transition from regular sets, also called crisp sets, to fuzzy sets we

start with crisp subsets of X. Let A be a subset of X. For each x in X we know whether

x belongs or does not belong to A. Define a function on Xwhose values are zero or one

as follows: (1) the value of the function at x is one if x is a member of A; and (2) the

value is zero if x does not belong to A. We write this function as A(x) ¼ 1 if x is in A

and A(x) ¼ 0 otherwise. This function is called the characteristic function on A and

any such function, whose values are either zero or one, defines a crisp subset of X.

Fuzzy sets generalize the characteristic function in allowing all values between 0

and 1. A fuzzy subset F of X is defined by its membership function (a generalization

of the characteristic function), also written F(x), whose values can be any number in

the interval [0, 1]. The value of F(x) is called the grade of membership of x in fuzzy

set F, and is often denoted bym(x). Ifm(x) is only 0 or 1, then we get the characteristic

function of a crisp, non-fuzzy, set F. Now suppose we have m(x) taking on values in

[0, 1] besides just 0 and 1. We say x belongs to F if mF(x) ¼ 1, x does not belong to F

when mF(x) ¼ 0, and x is in F with membership mF(x) if 0, mF(x), 1. The univer-

sal set always hasmX(x) ¼ 1 for all x in X, and the empty set is described by its mem-

bership function always zero [m0(x) ¼ 0 for all x in X]. Crisp sets are considered

special cases of fuzzy sets when membership values are always 0 or 1.

We must be a little careful about the term “membership function”. Since fuzzy

systems theorists have been almost exclusively concerned with numbers, their

fuzzy sets are almost always made up of words describing numbers. In this case,

membership functions take a very special form for converting a number into its

grades of membership; this form is completely inapplicable to fuzzy sets of non-

numeric quantities such as classifications, possible system troubles, or any of the

vast varieties of non-numeric fuzzy sets of interest in fuzzy reasoning. In fact, for

such fuzzy sets, the term “membership function” itself is only of theoretical interest,

and is best avoided in practice. The only universe in which the grades of membership

can be calculated by conventional numerical mathematics is the set of real numbers
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(i.e., the real line), or a subset of the real line such as all non-negative numbers. In

this sense, the term “membership function” means specifically a function defined on

numbers from the real line. Examples of such membership functions will be given in

Sections 3.3.2 and 3.3.3. Grades of membership for universes other than the real

numbers are normally calculated by the firing of rules, estimated by an observer

or some other method, rather than by membership functions.

At this point, we shall not be concerned with the important topic of how the mem-

bership functions are to be determined. We will discuss in later sections and chapters

methods of determining memberships and of specifying membership functions. Klir

and Yuan (1995) devote a whole chapter to construction of fuzzy sets and operations

on fuzzy sets.

There are two very special fuzzy sets needed in fuzzy expert systems: (1) discrete

fuzzy sets; and (2) fuzzy numbers.Wewill nowdiscuss both of these fuzzy sets indetail.

3.3.1 Discrete Fuzzy Sets

If X ¼ is finite, the simplest discrete fuzzy set D is just a fuzzy subset of X. We can

write D as

D ¼
m1

x1
,
m2

x2
, . . . ,

mn

xn

� �
(3:16)

where the membership value of x1 in D is m1. Also, if X is not finite but D(x) = 0 for

only x ¼ fx1, x2 , . . . , xng we write D as in equation (3.16). Conventionally, the truth

value of a member in a fuzzy set is called its grade of membership.

An example might be a fuzzy set Diagnosis of psychiatric diagnoses, shown in

(3.17). This is a non-numeric fuzzy set, since its members describe a non-numeric

quantity.

Diagnosis ¼
m1

depression
,

m2

bipolar disorder
,

m3

schizophrenia

� �
(3:17)

Discrete fuzzy sets for fuzzy expert systems may be numeric or non-numeric,

depending on whether their members describe numeric or non-numeric quantities.

(3.17) shows a non-numeric fuzzy set. As an example of a discrete numeric fuzzy

set consider (3.18),

Size ¼
m1

small
,

m2

medium
,

m3

large

� �
(3:18)

whose members describe a numeric quantity, Size. Members of a numeric discrete

fuzzy set always describe a numeric quantity. Such discrete fuzzy sets are called

linguistic variables, with members linguistic terms, and are discussed in Section

3.3.3.
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3.3.2 Fuzzy Numbers

Fuzzy numbers represent a number of whose value we are somewhat uncertain.

They are a special kind of fuzzy set whose members are numbers from the real

line, and hence are infinite in extent. The function relating member number to its

grade of membership is called a membership function, and is best visualized by a

graph such as Figure 3.1. The membership of a number x from the real line is

often denoted by m(x). Fuzzy numbers may be of almost any shape (though conven-

tionally they are required to be convex and to have finite area), but frequently they

will be triangular (piecewise linear), s-shape (piecewise quadratic) or normal (bell-

shaped). Fuzzy numbers may also be basically trapezoidal, with an interval within

which the membership is 1; such numbers are called fuzzy intervals. Fuzzy intervals

may have linear, s-shape or normal “tails”, the increasing and decreasing slopes.

Figures 3.1–3.4 illustrate fuzzy numbers with these shapes.

Assume that triangular and s-shaped fuzzy numbers start rising from zero at

x ¼ a; reach a maximum of 1 at x ¼ b; and decline to zero at x ¼ c. Then the mem-

bership function m(x) of a triangular fuzzy number is given by

m(x) ¼ 0, x � a

¼ (x� a)=(b� a), a , x � b

¼ (c� x)=(c� b), b , x � c

¼ 0, x . c

(3:19)

For trapezoids, similar formulas are used employing b1 and b2 instead of b.

A piecewise quadratic fuzzy number is a graph of quadratics m(x) ¼ c0 þ c1x þ

c2x
2 passing through the pairs of points (a, 0), ((aþ b)/2, 0.5); ((aþ b)/2, 0.5),

(b, 1); (b, 1), ((bþ c)/2, 0.5); and ((bþ c)/2, 0.5), (b, 0). At the points a, b and

c, d(m(x))/dx ¼ 0. For x , a and x . c, m(x) ¼ 0.

To derive simple formulas for the quadratic fuzzy numbers, it is best to consider

an effective translation of the x axis to the points x ¼ a for the first region, x ¼ b for

Figure 3.1 Membership function for a triangular fuzzy 1. Membership of 22 is 0.25.
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the second and third regions, and x ¼ c for the fourth region. At these three points

the first derivatives are 0, and the membership functions are given by

For a � x �
aþ b

2
; m(x) ¼ k1(x� a)2

For
aþ b

2
� x � b; m(x) ¼ 1� k1(b� x)2

For b � x �
bþ c

2
; m(x) ¼ 1� k2 x� bð Þ

2

For
bþ c

2
� x � b; m(x) ¼ k2 c� xð Þ

2

(3:20)

The constants k1 and k2 are easily evaluated by realizing that at x ¼ (aþ b)=2 and

x ¼ (bþ c)=2, the memberships are 0.5.

Figure 3.2 An s-shape fuzzy 1. Membership of 22 is about 0.1.

Figure 3.3 A normal fuzzy 1. Membership of 22 is 0.2.
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We may derive a formula for a normal (bell-shaped) fuzzy number by using the

dispersion d=2 from its central value b to the points where the membership is 0.5.

[For the approximating triangular fuzzy number, (b� d) corresponds to the point

x ¼ a where the membership first begins to rise from zero, b to the central value,

and (bþ d) to the point c where the membership first reaches zero after that.] A

normal fuzzy number with dispersion d and central value b has formula (3.21) for

its membership function:

exp ln(0:5)
x� b

d=2

� �2
 !

(3:21)

The support of a fuzzy number is the interval between the point where the

membership first begins to increase from zero and the point at which the member-

ship last returns to zero. Thus in the fuzzy numbers above, the support is the interval

from c to a, except for normal fuzzy numbers whose support is infinite.

If a ¼ b ¼ c and d ¼ 0, the fuzzy number has grade of membership 1 only at

x ¼ b, and is 0 everywhere else. Such a fuzzy number is called a singleton. A single-

ton is the precise fuzzy counterpart of an ordinary scalar number, such as (say) 35 or

3.1416. The graph of the membership function of a singleton fuzzy number is not very

exciting; it has a single spike from membership zero to membership one (with zero

width) at one point, and is zero everywhere else. Note that all the symmetric fuzzy

numbers pass through the points where m(x) ¼ 0.5 at x ¼ b þ/2 d/2. Convention-
ally, membership functions for fuzzy numbers will be normalized, which means

that their membership function takes on the value one for some x.

3.3.3 Linguistic Variables and Membership Functions

As mentioned in 3.3.1, some discrete fuzzy sets describe numeric quantities.

Numeric discrete fuzzy sets have been formalized as linguistic variables, which

Figure 3.4 Membership function for a trapezoidal fuzzy number. Membership of 22

is 0.34.
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consist of the name of the discrete fuzzy set; the names of its members, known as

linguistic values; and for each linguistic value, a membership function like those

for fuzzy numbers. The universe on which the linguistic variable is defined is

assumed to be the entire real line, although in specific applications a smaller uni-

verse might be needed, such as all non-negative real numbers. (The original defi-

nition of a linguistic variable (Zadeh, 1974) was somewhat broader, but our

definition will suffice.)

An example of a linguistic variable might be Speed, whose members are Slow,

Medium, and Fast, and whose membership functions are shown in Figure 3.5.

Linguistic variables have attracted much attention in the fuzzy literature, partly

because of their great importance in fuzzy control. The reader is cautioned that in

the fuzzy literature, the terminology has not been consistent; linguistic values

have also been called linguistic labels and linguistic terms. In addition, while mem-

bership functions are of course fuzzy sets with an infinite number of members, we

have seen that they are only one kind of fuzzy set. However, because of the great

interest in fuzzy control, the term “fuzzy set” in the literature often is assumed to

be synonymous with membership function. Usually, the context will make clear

what is meant.

3.4 FUZZY RELATIONS

3.4.1 Matrices of Truth Values

We will have several situations in which we deal with arrays of truth values. For

example, if we have digitized a membership function by sampling it at discrete

values of its numeric argument, we have created a vector of truth values. In the fol-

lowing section on fuzzy relations, we will deal with matrices of truth values. We will

call these fuzzy matrices. We now define an important operation we can employ on

Figure 3.5 Membership functions of a linguistic variable speed.
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such arrays. Roughly speaking, the operation of addition in ordinary matrices is

analogous to the fuzzy logical OR, and the operation of multiplication on ordinary

matrices is analogous to the fuzzy logical AND.

The most important operation on matrices of truth values is called composition,

and is analogous to matrix multiplication. Suppose I have two fuzzy matrices A and

B. To compose these matrices, they must meet the same size compatibility restric-

tions as in ordinary matrix multiplication. Let A have l rows and m columns, and let

B have m rows and n columns. They are compatible, since the number of columns of

A equals the number of rows of B. The composition of A and B is denoted A WB, and

will produce a matrix C having l rows and n columns.

In ordinary matrix multiplication, we would obtain cij by summing the product

aik � bkj over k. We could write this as

ci, j ¼ ai,1 � b1, j þ ai,2 � b2, j þ � � � þ ai,n � bn, j

In fuzzy matrix composition, we obtain cij by repeatedly ORing (aik AND bkj) over

all values of k, using min–max logic by default. This procedure gives:

cij ¼ (ai,1 AND b1, j) OR (ai,2 AND b2, j) OR � � � OR (ai,n AND bn, j) (3:22)

The operation of composing matrices A and B is written C ¼ A WB. For example,

suppose we have these two fuzzy matrices to be composed:

A ¼
0:2 0:4 0:6

0:3 0:6 0:9

� �

B ¼

0:5 1

0:7 0:5

1 0

2
64

3
75

(3:23)

We first compute c1,1, and apply (3.22) to the first row of A and the first column

of B. The minimum of 0.2 and 0.5 is 0.2; min(0.4, 0.7) is 0.4; and min(0.6, 1) is

0.6; and the maximum of these minima is 0.6. Continuing this procedure, we

obtain C as:

C ¼
0:6 0:4
0:9 0:5

� �
(3:24)

3.4.2 Relations Between Sets

We have two universal sets X and Y. By X � Y we mean the set of all ordered pairs

(x, y) for x in X and y in Y. A fuzzy relation R on X � Y is a fuzzy subset of X � Y ;

that is, for each (x, y) pair we have a number ranging from 0 to 1, a measure of the

relationship between x and y.
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As a simple example of a fuzzy relation let X ¼ {John, Jim, Bill} and

Y ¼ {Fred, Mike, Sam}. The fuzzy relation R between X and Y, which we will

call “resemblance”, might be as shown in Table 3.3.

Fuzzy relations may be given as matrices if the sets involved are discrete, or ana-

lytically if the sets are continuous, usually numbers from the real line. The members

of X and Y are often the members of fuzzy sets A and B; the fuzzy relation between

their members is often a function of their grades of membership in A and in B.

Theoretical fuzzy logical inference involves an important application of fuzzy

relations, in which the fuzzy relation is usually an implication, as discussed in

Section 3.1. (While this theory is important to fuzzy logicians, it is much less so

to builders of fuzzy expert systems, as we shall see below.) First, we must choose

an implication operator valid for classical logic. Suppose we picked the one given

in equation (3. 8). Next let A and B be two fuzzy numbers with membership func-

tions A(x) and B(x), respectively, shown in Figure 3.6. (Here X ¼ Y ¼ the set of

real numbers.) The fuzzy relation, from equation (3.8) is

R(x, y) ¼ min(1, 1� A(x)þ B( y)) (3:25)

for x and y any real numbers. Then tv(A ! B) ¼ R(x, y) in fuzzy logic. If A and B

are the two fuzzy numbers shown in Figure 3.6, the quadrant (x � 0, y � 0) of the

fuzzy relation R(x, y) is shown in Figure 3.7. (Other quadrants are not shown, since

they would obscure the graph.) R(x, y) is symmetric about the (y, R) plane, and is

everywhere 1 outside the region (24 , x , 4).

In fuzzy inference, we will need to compose fuzzy relations. If the fuzzy relation

exists in matrix form, the procedure in Section 3.4 may be followed. However, the

fuzzy relation may be given as a continuous function. Let R be a fuzzy relation on

X � Y and S another fuzzy relation on Y � Z. Then R(x, y) is a number in [0, 1]

for all x in X and all y in Y, and S(y, z) has its values in [0, 1] for all y in Y and

all z in Z. We compose R and S to get T, a fuzzy relation on X � Z. This is

written as R W S ¼ T . We compute T as follows:

T(x, z) ¼ supy{min{R(x, y), S(y, z)}} (3:26)

In equation (3.26), “sup” stands for supremum, which must be used in place of max

for many infinite sets. For example, the sup of x in [0, 1) ¼ 1, but this interval has no

max. On the other hand, sup of x in [0, 1] ¼ max of x in [0, 1] ¼ 1. Other AND type

operators [eqs. (3.2)–(3.3)] may be used in place of min in equation (3.26).

TABLE 3.3 A Fuzzy Relation

Fred Mike Sam

John 0.2 0.8 0.5

Jim 0.9 0.3 0.0

Bill 0.6 0.4 0.7
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As an example of composition, suppose the universe X has three members, and

the universe Y has two members. Let the relation between X and Y be given in

(3.27) as matrix R:

R ¼

0:4 0:8
0:2 0:9
1 0

2
4

3
5 (3:27)

Figure 3.6 Membership functions of two fuzzy numbers A and B.

Figure 3.7 Part of one quadrant of fuzzy relation A ! B between fuzzy numbers A(x) and

B(y) shown in Figure 3.6. Quadrant shown is x , 0, y . 0.
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Now suppose that a fuzzy set A, a fuzzy subset of X, has grades of membership

A ¼ (0:5 0:8 0:2) (3:28)

and we wish to compose fuzzy set A with R to get the grades of membership in fuzzy

set B, a fuzzy subset of Y. Then

Bj ¼ max(min(A1, Ri, j), min(A2 , Ri, j) . . . (3:29)

Applying (3.29) to the data in (3.27) and (3.28), we obtain

B ¼ (0:4 0:8) (3:30)

3.5 TRUTH VALUE OF FUZZY PROPOSITIONS

A general form of a common simple fuzzy proposition is

(A (comparison operator) B) (3:31)

in which A and B are compatible data items and the comparison operator is compa-

tible with the data types of A and B. Not all data types are compatible; for example,

we cannot compare an integer to a character string. The data types also restrict the

comparison operators that may be used with them; for example, we may only use

Boolean comparisons between scalar numbers, but may use fuzzy (approximate)

comparisons if one of the operands is fuzzy. Below we will discuss the most import-

ant fuzzy propositions: comparison of single-valued data, including members of

discrete fuzzy sets; and comparison of fuzzy numbers.

3.5.1 Comparing Single-Valued Data

Suppose a fuzzy proposition A has the form

A: (x ¼ y) (3:32)

where x and y are single-valued data, such as integers. Say x has value 3 and truth

value 0.8; y has value 3 and truth value 0.7. What is the truth value of proposition A?

It would seem fairly obvious that A cannot have a truth value greater than the

truth value of either of its components. The truth value of x is 0.8; the truth value

of the comparison is 1.0, since the value of x equals precisely the value of y; and

the truth value of y is 0.7. The truth value of A is then

tv(A) ¼ min(0:8, 1:0, 0:7) ¼ 0:7 (3:33)
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This is easily generalized to

tv(x (comparison operator) y) ¼ min(tv(x), tv(comparison), tv( y)) (3:34)

giving us a general way for evaluating the truth value of fuzzy proposi-

tions, which involve single-value data. Note that for Boolean comparison opera-

tors (,, ,¼, ¼, .¼, ,, ,.) the truth value of the comparison will always be

0 or 1.)

Members of discrete fuzzy sets may be tested in the same way. Consider

proposition B:

B ¼ (size is Small) (3:35)

where size is a discrete fuzzy set, of which Small is a member. The truth value of the

fuzzy set size is one. Since Small is a member of size, the truth value of “is” is also 1.

The truth value of Small is its grade of membership in size, say 0.75. Then the truth

value of B is given by

tv(B) ¼ min(1, 1, (tv(Small)) ¼ 0:75 (3:36)

The truth value of such propositions as (3.35) is always the grade of membership of

the fuzzy set member. (There are cases when a discrete fuzzy set may be a member

of a higher level fuzzy set and its truth value may not be 1, but these are not dis-

cussed in this book.)

3.5.2 Comparing Fuzzy Numbers

Comparing fuzzy numbers involves data with multiple values and truth values; the

members of a fuzzy number are numbers from the real line. This comparison may be

carried out using the extension principle:

tv(A �¼ B) ¼ max(min(A(x), B(x) over all x

Let us compare the fuzzy numbers A and B, shown in Figure 3.8, for equality;

that is, we will evaluate the truth value of the proposition (A �¼ B), where �¼

stands for “approximately equals”.

A and B intersect at grades of membership 0 and 0.5. The greatest of these

is 0.5; that is, the truth value of the approximate comparison (A �¼ B).

Extension of this method to cover other fuzzy comparisons between fuzzy

numbers, such as (A �, B), requires additional mathematics, and will be taken

up in Section 4.6.
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3.6 FUZZIFICATION AND DEFUZZIFICATION

3.6.1 Fuzzification

The verb “to fuzzify” has two meanings: (1) to find the fuzzy version of a crisp

concept, and (2) to find grades of membership of linguistic values of a linguistic

variable corresponding to an input number, scalar or fuzzy. Usually, the term fuzzi-

fication is used in the second sense, and it is that sense that we now explore.

Suppose we have a fuzzy number t whose truth values are defined from 0

to 1008C. To fuzzify t means to find grades of membership of linguistic values in

a linguistic variable (say Temperature), which are the linguistic equivalent of

the number t, over the interval t [0, 100]. The name of the fuzzy set could be

Temp with members flow, medium, highg, all defined by membership functions

in [0, 100].

The fuzzification operation is quite simple. The grade of membership of each

linguistic value is the truth value of the fuzzy propositions

m(low) ¼ tv(t �¼ low)

m(medium) ¼ tv(t �¼ medium)

m(high) ¼ tv(t �¼ high)

(3:37)

in which (e.g.) m(low) is the grade of membership of low in linguistic variable

Temp, and the operator symbol �¼ indicates an approximate comparisons

between the operands, defined in Section 3.5.2.

We illustrate fuzzification by showing the membership functions for Temp

together with a fuzzy number for t, to be fuzzified into Temp in Figure 3.9.

The input fuzzy number t crosses the membership function of low at a member-

ship value of 0.42; crosses the membership function for medium at two non-zero

Figure 3.8 Comparing two fuzzy numbers A and B for equality.
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points, of which the greater is 0.88; and the crosses membership for high at 0.14.

The fuzzified membership value of low is 0.42; of medium, 0.88; and of high,

0.14. The fuzzification process is now complete, and Temperature is now this

fuzzy set:

Temperature ¼
0:42

low
,

0:88

medium
,
0:14

high

� �
(3:38)

Exercise Fuzzify.par. Program Fuzzify.par illustrates converting a number, the

weight of a dog, into a fuzzy set of word descriptors. Membership functions are

defined and plotted to represent the validity of the descriptors Small, Medium, or

Large as applied to your dog. The input number will be the weight of your dog,

real or imagined; the output will be the grades of membership (truth values) of

the descriptive terms derived from your input number. Simply invoke TFLOPS,

load program Fuzzify.par from the Examples folder and run it. The truth values

are given on a zero-1000 scale, rather than 0 to 1.

The critical command, fuzzify, is in rule r2:

:rule r2
rule (goal Fuzzifies DogWt into fuzzy set size)
IF (in Data DogWt = <X> AND DogWt > 0)
THEN
message ’Fuzzifying <X>\n’,
fuzzify 1 size <X>,
fire block 0 off,
fire block 1 on;

Figure 3.9 Membership functions of a linguistic variable temperature, with an input fuzzy

number t to be fuzzified. Grade of membership of low is approximately 0.43; of medium,

0.89; and of high, 0.15.
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Fuzzify.par uses two rule blocks, and activates and deactivates them with the

“fire” command.

3.6.2 Defuzzification

At the end of a sequence of rule firings in a fuzzy expert system we may end up with

a fuzzy conclusion C that is a linguistic variable, whose values have been assigned

grades of membership. Quite often we want to compute a single scalar, which cor-

responds to these grades of membership. The process of computing a scalar from

C is called defuzzification. This is especially needed in fuzzy control because the

final conclusion must be communicated to the process, and the defuzzified value

is the signal sent to the process.

Defuzzification is a much more complex process than fuzzification; there are

several choices to be made, and many different methods have been proposed. We

will not attempt to explore the entire array of possibilities; instead, we will lay

out the areas where choices must be made, and indicate which choices are most com-

monly used.

We will assume that at the start of the defuzzification process, the grades of mem-

bership of the fuzzy set to be defuzzified are known.

First, we must decide how to modify the membership functions for the linguistic

values to reflect the fact that each value probably has a different grade of member-

ship, some of which may be 0, and some of which will in all likelihood not be 1, but

somewhere between 0 and 1. Let us call a general linguistic value “value”, and the

linguistic variable of which value is a member “Lvariable”. We will call the mem-

bership of real number x in “value” m(x, value) and the membership of value in lvar

m(value, Lvariable). We now wish to modify the membership function for value

to reflect the fact that the membership of value in Lvariable is not necessarily

1. Let us call the modified membership function m0(x, value). We usually modify

the m(x, value) by ANDing the membership function m(x, value) with m(value,

lvar). This yields

m0(x, temp) ¼ m(x, temp) AND m(temp, 1var) (3:39)

The most common choices for the AND operator in (3.39) are the Zadehian

min(A, B), often known as the Mamdani method because of its early successful

use in process control by Mamdani (1976) and the product operator tv(A) . tv(B).

In Figure 3.10, we show the membership functions of Figure 3.9 modified to

reflect the memberships of their respective linguistic values.

Next, the individual membership functions in Figure 3.10 must be aggre-

gated into a single membership function for the entire linguistic variable. Aggrega-

tion operators resemble t-conorms, but with fewer restrictions (Klir and Yuan 1995,

p. 88 ff); the Zadehian max OR operator is frequently used. Figure 3.11 shows the

aggregated membership functions of Figure 3.10.
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In the last step, we find a single number compatible with the membership function

for Temp in Figure 3.11. This number will be the output from this final step in the

defuzzification process.

There are several methods for calculating a single defuzzified number. We will

present three: the average maximum method, the weighted average maxima

method, and the method most commonly used, a centroid method. In the following,

let x represent the numbers from the real line, let m(x) be the corresponding grade of

membership in the aggregated membership function, let xmin be the minimum x

value at the maximum and xmax be the maximum x value at the maximum, and

let �XX be the defuzzified value of x.

The simplest is the average maximum method. In Figure 3.11, the maxi-

mum grade of membership stretches from x ¼ 43 to x ¼ 55. The average of

Figure 3.10 Membership functions of linguistic values in linguistic variable temperature,

modified by the grades of membership of the linguistic values A AND B ¼ min(A, B).

Figure 3.11 Aggregated membership functions of linguistic values in linguistic variable

temperature, using Zadehian max(A, B) OR operator.
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these is 49; this is the defuzzified value by the average maximum method. The

formula is

�XX(average maximum) ¼ (x max1 þ x max2)=2 (3:40)

Next is the weighted average maxima method. In Figure 3.11, we have two

maxima: one stretches from x ¼ zero to x ¼ 15 with grade of membership 0.42,

and the second stretches from x ¼ 43 to x ¼ 55 with grade of membership 0.88.

We take the average of these two maxima, weight each by its grade of membership,

and add the products, and divide this sum by the sum of the grades of membership.

The defuzzified value by this method is

�XX ¼
(0þ 15)

2
� 0:42þ

43þ 55

2

� �
0:88

� �
ð0:42þ 0:88Þ ¼ 35:6

Denote the start and end of each local maximum by xmini and xmaxi. If we have n

local maxima, the general formula is

�XX(weighted average maxima) ¼
Xn
i¼1

(xmaxi �m(xmaxi ))P
m(xmaxi )

(3:41)

The final method, preferred by most fuzzy control engineers, is the centroid

method. It is

�XX(centroid) ¼

Ð b
a
xm(x)dxÐ b

a
m(x)dx

(3:42)

In these integrals, we have assumed that the support of the aggregated membership

function is the interval [a, b]. In our case, the defuzzified value by the centroid

method is 41.8.

The defuzzification process may be made much simpler by assigning singleton

membership functions to the output linguistic variable. Remember that a singleton

is a fuzzy number with grade of membership one at only one value of its argument,

and grade of membership zero everywhere else. In this case, the centroid method

reduces to a simple weighted average.

While not usually of interest to control engineers, the idea of reversible defuzzi-

fication is sometimes attractive to expert system modelers in other areas. By revers-

ible defuzzification, we mean that if an input number is fuzzified and immediately

defuzzified, the defuzzified value equals the input value. Reversible defuzzification

is assured if membership functions are triangular, adjacent membership functions

intersect at a membership of 0.5, as each membership function begins to decline

from 1 the next begins to ascend from 0, and memberships always add to 1 over
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the admissible range of input numbers. However, fuzzy control engineers routinely

shape response surfaces (plots of defuzzified value against the input variables)

very carefully to achieve specific quantitative results, and may require the flexibility

offered by the numerous variations on the defuzzification theme.

Exercise Defuzz.par. Program Defuzz.par illustrates both fuzzification and defuz-

zification. A discrete fuzzy set with members Short, Medium, and Tall is declared,

and membership functions for these terms are defined. The user enters a height.

Defuzz then fuzzifies the height into discrete fuzzy set size and prints out the

grades of membership. This newly defined fuzzy set is now defuzzified into a

scalar number, which is then printed out. The membership functions are chosen

so that fuzzification and defuzzification are reversible.

Of course, non-numeric discrete fuzzy sets cannot be defuzzified since they do

not describe numbers.

3.7 QUESTIONS

3.1 Evaluate the following:

a. Proposition P ¼ A AND B; proposition Q ¼ A OR B. For all crisp truth

values for A and B, first construct a truth table for P, for Q, for P AND

Q, and for P OR Q.

b. Proposition R ¼ A IMPLIES B; proposition S ¼ A OR B. For all crisp

truth values for A and B, first construct a truth table for P, for Q, for P

AND Q, and for P OR Q.

3.2 Let W be a complex logical proposition made up of elementary (atomic) prop-

ositions P, Q, R . . . connected by and, or, implies and using not. For example,

W ¼ not (P implies (not Q))

W is a tautology if tv(W) ¼ 1 for all values of tv(P), tv(Q), . . . ; the truth table

for a tautology W will contain only 1 in its last column. W is a contradiction

if tv(W) ¼ 0 for all values of tv(P), . . . ; the truth table for a contradiction W

will contain only 0 in its last column. Determine if the following complex

propositions are tautologies, contradictions, or neither.

a. P and (not Q)

b. (not P) or Q

c. (P and (P implies Q)) ! Q

d. ((P ! Q) and (Q ! R)) ! (P ! R)

3.3 Show that using the tautology (de Morgan’s theorem)

P or Q ¼ not((not P) and (not Q))
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we can obtain

a. (3.4) from (3.1)

b. (3.5) from (3.2)

c. (3.6) from (3.3)

3.4 Derive the formulas for k1 and k2 for a piecewise quadratic fuzzy number with

membership 0 at x ¼ a, 1 at x ¼ b, and 0 at x ¼ c with a, b, c. Evaluate k1
and k2 if a ¼ 0, b ¼ 1 and c ¼ 4, and test that m ¼ 0 at x ¼ (a þ b)/2 and

x ¼ (b þ c)/2. (See Section 3.3.2.)

3.5 Construct a truth table for the operator NAND: ANANDB ¼ NOT(A ANDB)

using

a. Equation (3.1) for AND

b. Equation (3.3) for AND

3.6 Assume tv(P) and tv(Q) can be any value in [0, 1]. Show that

a. Equations (3.1) and (3.2) can produce different results.

b. Equations (3.3) and (3.6) can produce different results.

3.7 Evaluate equation (3.11) using (3.3) for AND and (3.6) for OR

3.8 Let A be a 3 � 3 fuzzy matrix and we compute A2 ¼ A . A using min–max

composition as discussed in Section 3.4.1. Let A3 ¼ A2 . A, A4 ¼ A3 . A,

and so on.

a.

If A ¼

0 0:2 1

0:4 0 1

0 1 0:3

0
@

1
A, then find A2, A3, A4, A5, . . .

b.

If A ¼

1 0 0:2
0:4 1 0

0 0:3 1

0
@

1
A, then find A2, A3, . . .

c. Make an educated guess on what happens to A2, A3, A4, . . . for all 3�3

fuzzy matrices A.

3.9 Fuzzification in equation (3.31) was done using a fuzzy number for t. It can

also be done using crisp numbers for t, considering the crisp number as a sin-

gleton fuzzy number. Compute the discrete fuzzy set Temperature using

Figure 3.9 if

a. t ¼ 50

b. t ¼ 25

c. t ¼ 75
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3.10 Defuzzification, as described in Section 3.6.2, is somewhat complicated. To

speed up defuzzification assign to each fuzzy number its central value and

then find the centroid. In the example in 3.6.2, we obtain the discrete fuzzy set

F ¼
0:42

0

0:88

50

0:14

100

� �

from equation (3.31). Find the centroid of F and compare to the value of 41.8

obtained in Section 3.6.2.
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4 Fuzzy Logic, Fuzzy Sets, and
Fuzzy Numbers: II

4.1 INTRODUCTION

This chapter presents some topics in fuzzy systems theory more advanced than those

in Chapter 3. We begin with the algebra of fuzzy sets and fuzzy numbers, followed

by a discussion of fuzzy logical inference called approximate reasoning. A discus-

sion of the modifying words called hedges and a treatment of fuzzy propositions is

followed by a section on fuzzy arithmetic, which includes a section on the important

extension principle. The chapter concludes with a more complete treatment of fuzzy

comparisons than that given in Chapter 3. The problems at the end of the chapter are

designed to test your knowledge of basic fuzzy logic and fuzzy sets.

4.2 ALGEBRA OF FUZZY SETS

4.2.1 T-Norms and t-Conorms: Fuzzy AND and OR Operators

Given fuzzy sets A, B, C, . . . all fuzzy subsets of X, we wish to compute

A< B, B> C, and so on. What we use in fuzzy logic are the generalized AND

and OR operators from classical logic. They are called t-norms (for AND) and

t-conorms (for OR). We first define t-norms.

A t-norm T is a function from [0, 1] � [0, 1] into [0, 1]. That is, if z ¼ T(x, y),

then x, y, and z all belong to the interval [0, 1]. All t-norms have the following

four properties:

1. T(x, 1) ¼ x (boundary)

2. T(x, y) ¼ T(y, x) (commutativity)

3. if y1 � y2, then T(x, y1) � T(x, y2) (monotonicity)

4. T(x, T(y, z)) ¼ T(T(x, y), z) (associativity)

T-norms generalize the AND from classical logic. This means that tv(P AND

Q) ¼ T(tv(P), tv(Q)) for any t-norm and equations (4.1)–(4.3) are all examples of
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t-norms. The basic t-norms are

Tm(x, y) ¼ min(x, y) (4:1)

TL(x, y) ¼ max(0, xþ y� 1) (4:2)

Tp(x, y) ¼ xy (4:3)

and T�(x, y) defined as x if y ¼ 1, y if x ¼ 1, 0 otherwise.

Tm is called the standard or Zadehian intersection, and is the one most commonly

employed; TL is the bounded difference intersection; Tp is the algebraic product; and

T� is the drastic intersection. It is well known that

T� � TL � Tp � Tm (4:4)

and

T� � T � Tm (4:5)

for any t-norm T.

If A and B are fuzzy subsets of universal set X, then C ¼ A> B is also a

fuzzy subset of X and from De Morgan’s theorems (3.8) the membership function

of C as

C(x) ¼ NOT T(NOT A(x), NOT B(x)) ¼ 1� T(1� A(x)), 1� B(x)) (4:6)

for all x in X. Equation (4.6) defines the membership function for C for any

t-norm T.

t-Conorms generalize the OR operation from classical logic. As for t-norms, a

t-conorm C(x, y) ¼ z has x, y, and z always in [0, 1]. The basic properties of any

t-conorm C are

1. C(x, 0) ¼ x (boundary)

2. C(x, y) ¼ C(y, x) (commutativity)

3. If y1 � y2, then C(x, y1) � C(x, y2) (monotonicity)

4. C(x, C(y, z)) ¼ C(C(x, y), z) (associativity)

The basic t-conorms are

1: Cm(x, y) ¼ max(x, y) called standard union (4:7)

2: CL(x, y) ¼ min(1, xþ y) called bounded sum (4:8)

3: Cp(x, y) ¼ xþ y� xy called algebraic sum (4:9)
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and

4: C�(x, y) called drastic union that is defined as:

x if y ¼ 0; y if x ¼ 0; and one otherwise (4:10)

It is well known that

Cm � Cp � CL � C� (4:11)

and

Cm � C � C� (4:12)

for all t-conorms C.

To compute A< B for A and B fuzzy subsets of X, we use a t-conorm. If we let

D ¼ A< B, the we compute the membership function for D as

D(x) ¼ C(A(x), B(x)) (4:13)

for a t-conorm C, for all x in X.

The complement of a fuzzy set A, written Ac, is always determined by

Ac(x) ¼ 1� A(x) (4:14)

for all x in X.

T-norms and t-conorms are only defined for two variables and in fuzzy expert

systems we need to extend them to n variables. Through associativity, the fourth

property, we may extend T(x, y) to T(x1, . . . , xn) and C(x, y) to C(x1, . . . , xn) for
each xi in [0, 1], 1 � i � n. Tm and Cm are easily generalized to

Tm(x1, . . . , xn) ¼ min(x1, . . . , xn) (4:15)

Cm(x1, . . . , xn) ¼ max(x1, . . . , xn) (4:16)

Next we have for TL and CL

TL(x1, . . . , xn) ¼ max 0,
Xn
i¼1

xi � nþ 1

 !
(4:17)

CL(x1, . . . , xn) ¼ min 1,
Xn
i¼1

xi

 !
(4:18)
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Also, we easily see that

Tp(x1, . . . , xn) ¼ x1, . . . , xn (4:19)

but the extension of Cp is more complicated. For n ¼ 3, we see that

CP(x1, x2, x3) ¼ (x1 þ x2 þ x3)� (x1x2 þ x1x3 þ x2x3)þ (x1x2x3) (4:20)

and the reader can see what needs to be done for n ¼ 4.

When one computes A> B and A< B one usually uses a t-norm T for A> B and

its dual t-conorm C for A< B. A t-norm T and t-conorm C are dual when

C(x, y) ¼ 1� T(1� x, 1� y)

The usual dual t-norms and t-conorms are Tm, Cm and TL , CL and Tp , Cp and T
�, C�.

Using the above operators, fuzzy sets do not enjoy all the algebraic properties of

regular (crisp) sets. (In Section 4.2.2, we will see that this problem may be avoided

by the use of correlation fuzzy logic.) Once you choose a t-norm T for intersection

and its dual t-conorm C for union, some basic algebraic property of crisp sets will

fail for fuzzy sets. Let us illustrate this fact using Tm, Cm, and TL, CL. For crisp

sets, the law of non-contradiction is A> Ac ¼ 1 (the empty set) and the law of

the excluded middle is A< Ac ¼ X (the universal set), where A is any crisp

subset of X. Using Tm, Cm both of these basic laws can fail. For fuzzy sets, the

law of non-contradiction is A> Ac ¼ 1, where now 1 is the fuzzy empty set

whose membership function is always zero; the law of the excluded middle

would be A< Ac ¼ X, where X is the fuzzy set whose membership function is

always one. In Section 4.2.3, we show that we do not get identically one for Cm.

However, in the problems you are asked to verify that the laws of non-contradiction

and excluded middle hold if you use TL and CL. But, if you choose to use TL and CL

for fuzzy set algebra, the distributive law fails. This means that for T ¼ TL for inter-

section and C ¼ CL for union, then

A> (B< C) = (A> B)< (A> C) (4:21)

for some fuzzy sets A, B, and C (see the Questions, Section 4.8).

4.2.2 Correlation Fuzzy Logic

As we have seen, one must be careful when working with equations in fuzzy sets

involving intersection, union, and complementation because the equation may be

true for crisp sets but false for fuzzy sets. It would be nice to have a method of

doing the algebra of fuzzy sets so that all the basic equations for crisp sets also

hold for fuzzy sets. This is true of correlation fuzzy logic. In correlation fuzzy

logic you can use TL , CL in certain cases and Tm , Cm in other cases.
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In the papers Buckley and Siler (1998, 1999), we introduced a new t-norm T^ and

a new t-conormC^, which depend on a parameter r in [21, 1], which is the correlation

between the truth values of the operands. For example, to compute D ¼ A> B we use

D(x) ¼ T^(A(x), B(x)) for all x, where the t-norm T^ to be used depends on any prior

association between A and B. (In most cases r will demand prior knowledge, but if we

are combining A and NOT A prior knowledge is not required; we know that A and

NOT A are maximally negatively correlated, and their correlation is 21.) Let

a ¼ tv(A)

b ¼ tv(B)

r ¼ prior correlation coefficient between a and b

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a(1� a)b(1� b)

p (4:22)

Then T^(a, b) and C^(a, b) are defined by

d ¼ a(1� a)b(1� b)

rU ¼ (min(a, b)� ab)=d

rL ¼ (max(aþ b� 1, 0))=d

if r , rL then r0 ¼ rL

else if r . rU then r0 ¼ rU

else r0 ¼ r

T^(a, b) ¼ aþ b� r0d

C^(a, b) ¼ aþ b� ab� r0d

(4:23)

A specification of r as 1 is equivalent to specifying the standard min–max fuzzy

logic. It is possible to specify values for a, b, and r that are incompatible. For

example, if a is specified as 0.4 and b as 0.6, a value for r of 1 is not possible. In

(4.16), rU and rL are the limits of possible values for r given a and b. In the event

that a value of r outside those limits is specified, the possible value of r(rEff)

nearest the specified value is used. If a value of r of 1 is specified, this value of

rEff will always result in the standard Zadehian min–max logic being used, no

matter what values a and b have.

The notion of semantic consistency between fuzzy sets was put forward by

Thomas (1995). Up to now, we have considered proposition with a single truth

value. We may also have to consider combining fuzzy numbers and membership

functions defined on the real line. Let one fuzzy number or membership function

be defined by m1(x), and the other by m2(x). In this case, we compute the cross-

correlation coefficient using the well-known formula

r ¼ cov(m1(x), m2(x))=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var(m1(x)) � var(m2(x))

p
by integrating over the area of overlap only. If no overlap, r ¼ 21.
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It was shown that

TL � T^ � TM (4:24)

CM � C^ � CL (4:25)

T^ ¼ Tp , C
^ ¼ Cp , if r ¼ 0; T^ ¼ TL , C

^ ¼ CL , if r ¼ �1 (4:26)

and

T^ ¼ Tm , C
^ ¼ Cm , if r ¼ 1 (4:27)

A computer routine in the C language to calculate a AND b and a OR b using

correlation logic is

//Function CorrLogic - given a, b and default r,
//returns aANDb and aORb
//04-17-2004 WS

#include <math.h>

double min(double x, double y);
double max(double x, double y);

bool CorrLogic (double a, double b, double r, double

* aANDb, double * aORb)
f

double std, ru, r1;

if (a < 0||a > 1||b < 0||b > 1||r < -1||r > 1)
return false;

std ¼ sqrt(a * (12 a) * b * (12 b));
if (std > 0)
f

ru ¼ (min(a, b)2 a * b)/std;
rl ¼ (max(aþ b)2 1, 0)2 a * b)/std;
if (r < rl)

r ¼ rl;
else if (r > ru)

r ¼ ru;
g

*aANDb ¼ a * bþ r * std;
*aORb ¼ aþ b2 a * b2 r * std;

return true;
g
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double min(double x, double y)
f

if (x < y)
return x;

else
return y;

g

double max(double x, double y)
f

if (x > y)
return x;

else
return y;

g

There are two basic cases where it is obvious what to choose for r. To find

A< A, A> A we must use r ¼ 1 since A and A are maximally positively

correlated. Then, T ¼ Tm and C ¼ Cm so that A< A ¼ A, A> A ¼ A. For

A< Ac, A> Ac we must use r ¼ �1 because A and Ac are maximally negatively

correlated. Then, we have T ¼ TL, C ¼ CL for this value of r so that A< Ac ¼

X, A> Ac ¼ 1 and the laws of non-contradiction and excluded middle hold.

We showed that using this new t-norm and t-conorm (correlation logic), and

properly choosing the value of the parameter r, all the basic laws of crisp set

theory also now hold for fuzzy sets, including the laws of excluded middle and

non-contradiction.

We may ask: If we have no knowledge of prior associations between A and B,

what should the default logic be? We suggest, on the basis of nearly 20 years of

experience, that the Zadehian min–max logic is a desirable default. If we are eval-

uating rules with complex antecedents, with any other logic the truth value of an

antecedent with several clauses ANDed together tend to drift off to zero as the

number of clauses increases; and when aggregating the truth values of a consequent

fuzzy set member by ORing them together, the resulting truth value tends to drift up

to one. The Zadeh logic, unless combining B and NOT B, passes a pragmatic test; it

works, and works well.

4.2.3 Combining Fuzzy Numbers

Since fuzzy numbers are fuzzy sets, we may perform logical operations upon them,

such as A> B, A< B, A> Bc, and so on, when A and B are fuzzy numbers.

Consider the fuzzy number A and its complement NOT A in Figure 4.1.

We now construct the intersection A AND NOT A using the conventional min–

max logic, Tm, shown in Figure 4.2. Because segments of membership functions

coincide in a number of places, the labeling of the graph is a little complicated.
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The intersection of A and NOT A is not everywhere zero, as we would expect

from the laws of classical logic, but has two sharp peaks with m(2) and m(6)

being 0.5. Similarly, the union A OR NOT A is not everywhere one but has two

sharp notches, shown in Figure 4.3.

If, however, we use TL rather than TM , we obtain A> Ac ¼ 1 and not Figure 4.2.

To evaluate A< Ac use CL , then A< Ac ¼ X and we eliminate the notches in

Figure 4.3. An occasion when correlation logic is of theoretical importance was

caused by a paper by Elkan (1994), which offered a proof that fuzzy logic was

only valid for crisp propositions. This paper depended on the fact that standard

fuzzy logic, and indeed all multivalued logic, fail to fulfill the laws of excluded

middle and non-contradiction. When the appropriate logic is used for combining

A and NOT A the excluded middle and non-contradiction laws are obeyed, and

Elkan’s proof fails.

Figure 4.1 A fuzzy number A and its complement NOT A.

Figure 4.2 A fuzzy number A, Ac and (A AND Ac) using standard min–max fuzzy logic Tm.
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4.3 APPROXIMATE REASONING

Approximate reasoning is the term usually used to refer to fuzzy logical inference

employing the generalized fuzzy modus ponens, a fuzzy version of the classical

modus ponens discussed in Section 3.1. (Here, we are using “approximate reason-

ing” in a strict technical sense; the term is also used sometimes in a less technical

sense, to mean reasoning under conditions of uncertainty.)

The classical modus ponens is

if A then B (4:28)

which can be read if proposition A is true, then infer that proposition B is true. The

modus ponens itself is a proposition, sometimes written as “A implies B” or

“A ! B”, where “implies” is a logical operator with A and B as operands whose

truth table given in Chapter 3, Table 3.2. The modus ponens is an important tool

in classical logic for inferring one proposition from another, and has been used

for that purpose for roughly 2000 years.

The fuzzy version of the modus ponens, the generalized modus ponens, has been

formulated as:

If X is A then Y is B

from X ¼ A0

infer that Y ¼ B0

(4:29)

in which A and A0 are fuzzy sets defined on the same universe, and B and B0 are also

fuzzy sets defined on the same universe, which may be different from the universe

on which A and A0 are defined. In fuzzy control, usually the membership functions

of fuzzy sets are defined on the real line, and hence are fuzzy numbers.

Figure 4.3 A fuzzy number A, its complement Ac, and (A OR Ac) using standard min–max

fuzzy logic TM.
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Calculation of B0 from A, B, and A0 is straightforward. First, a fuzzy implication

operator is chosen; implication operators are discussed in Section 3.1. The

implication A(x) ! B(y) defines a fuzzy relation A ! B between A and B. Next,

B0 is calculated by composing A0 with A ! B, following the procedure in

Section 3.4.2:

B0 ¼ A0 � (A ! B) (4:30)

The fuzzy conclusion B0 is computed using the compositional rule of inference

B0 ¼ A0oR (Sections 3.4.1–3.4.2). This expression defines the membership function

for the fuzzy conclusion B0. The compositional rule of inference is valid for all fuzzy

sets; they do not have to be fuzzy numbers. A and A0 must be fuzzy subsets of the

same universal set X, and B and B0 must be fuzzy subsets of a universal set Y, which

may or may not be the same as X. Let us go through the details of the compositional

rule of inference for discrete fuzzy sets. Let

A ¼
0:3

x1
,
0:7

x2
,
1:0

x3

� �

B ¼
0:5

y1
,
1:0

y2
,
0:6

y3

� � (4:31)

and

A0 ¼
1:0

x1
,
0:6

x2
,
0:3

x3

� �
(4:32)

Choose the implication operator T(x, y) ¼ min(1, 12 xþ y), called the Lukasiewicz

implication operator, in equation (3.8). Then, R(x, y) is shown in (4.33).

R ¼

1 1 0:5
0:8 1 1

0:6 1 0:6

2
4

3
5 (4:33)

We are now ready to obtain B0 from A0oR. Using T ¼ Tm , we see

B0( y1) ¼ max(min(1, 1), min(0:6, 0:8), min(0:3, 0:6)) ¼ 1

B0( y2) ¼ max{min(1, 1), min(0:6, 1), min(0:3, 1)} ¼ 1

B0( y3) ¼ max(min(1, 0:5), min(0:6, 1), min(0:3, 0:6)) ¼ 0:6

(4:34)

and

B0 ¼
1:0

y1
,
1:0

y2
,
0:6

y3

� �
(4:35)
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The fuzzy sets A and B in approximate reasoning are usually fuzzy numbers (ormem-

bership functions defined on the real line).

Approximate reasoning using the generalized modus ponens has been proposed

for fuzzy inference from if–then rules. Consider the fuzzy if–then rule

If x is Big, then y is Slow (4:36)

Where Big is defined by fuzzy number A and Slow is specified by fuzzy number

B. Now suppose we are presented with a new piece of information about Big in

the form of fuzzy set A0. That is, we are given that x ¼ A0 and this new fuzzy

number does not have to equal A. Figure 4.4 shows an example of fuzzy numbers

A, B and A0. A0 is close to A, but not identical.

Given the fuzzy rule in equation (4.27) and the data x ¼ A0, we wish to draw a

conclusion about Slow. If the conclusion is y ¼ B0, we can apply the generalized

modus ponens in (4.24) compute a new fuzzy number B0 for Speed. To do this

we must first choose an fuzzy logical implication operator I(x, y) giving the impli-

cation relation between A(x) and B(y). I(x, y) could be any function that will reduce

to the classical values for implication in Table 3.2 when x and y are 0 or 1, so we

could use any of the formulas given in equations (3.7)–(3.9) or any other fuzzy

implication operator.

There are many fuzzy implication operators from which to choose; Klir and Yuan

(1995, p. 309) list fourteen. Choice, according to Klir and Yuan (1995), will depend

on the application. Our application is clear; we wish to employ the implication oper-

ator in the generalized fuzzy modus ponens. Let R be the fuzzy relation (A ! B).

We pick the simplest (Gaines–Rescher), defined by equation (4.28),

R(x, y) ¼ tv(A(x) ! B( y)) ¼ 1 if tv(A(x)) � tv(B( y)), else R(x, y) ¼ 0 (4:37)

Figure 4.4 Membership functions of fuzzy numbers A, A0, and B.
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and obtain B0 by composing A0 with R, using

B0( y) ¼ supx{(A
0(x), R(x, y))} (4:38)

where sup denotes supremum, the smallest number that is not exceeded by the argu-

ments. Carrying out the calculation for 0 � x � 20, we obtain the B0 shown in

Figure 4.5.

We can see immediately that B0 is nowhere less than 0.5 on the entire real line.

Clearly, using the centroid method to defuzzify a membership function that extends

from2infinity to þinfinity with non-zero membership is not possible. The problem

is not caused by the particular implication operator chosen; any implication operator

that reduces to the classical for crisp operands has a similar problem.

Another problem is the property of consistency. We say a method of fuzzy

reasoning is consistent if whenever A0 ¼ A, we get the conclusion B0 ¼ B; that is,

if the data matches the antecedent exactly, the conclusion must match the conse-

quent exactly. However, approximate reasoning may, or may not, be consistent. It

depends on the implication operator. For some it is consistent and for other impli-

cation operators it is not consistent. Klir and Yuan (1995, p. 309) list 14 implication

operators, of which 7 do not possess consistency. [The Gaines–Rescher implication

in equation (4.28) is consistent.]

A third problem is that if A0 > A ¼ 1 using Tm, we get B
0( y) ¼ 1 for all y; if the

data A0 and the specification A are disjoint, the conclusion is the universal set. We

have been assuming that I(0, y) ¼ 1 for all y, which is true for most of the usual

implication operators (Klir and Yuan, 1995). You are also asked to check this

result in the problems. Because of these reasons, and others discussed in Chapter 8,

we will not use approximate reasoning in our fuzzy expert system. What is used in

practice is not an implication operator, but a fuzzy AND (t-norm). Although of

Figure 4.5 Membership functions of fuzzy numbers A, A0, B, and B0. B0 is obtained from A,

A0, and B by Approximate Reasoning using Gaines–Rescher implication.
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course a t-norm is not an implication at all, the min t-norm used in this context is

sometimes called a “Mamdani implication”, from its use by Mamdani in fuzzy

control.

The above discussion assumed that approximate reasoning was based on fuzzy

implications that reduce to the classical for crisp operands. Fuzzy inference may

be based on other fuzzy relations R. Going back to equation (4.28), we could

define R by

R(x, y) ¼ min(A(x), B( y)) (4:39)

We can compose A0 with this R to obtain B0. If we do, we get the perfectly reason-

able result shown in Figure 4.6. In fact, this general type of fuzzy relation based on

t-norms is used almost universally in fuzzy control.

Approximate reasoning may be extended to more complex antecedents and to

blocks (multiple) of IF-the rules (Klir and Yuan, 1995). However, we shall not

present further results in this book.

4.4 HEDGES

Hedges are modifiers, adjectives, or adverbs, which change truth values. Such

hedges as “about”, “nearly”, “roughly”, and so on, are used in fuzzy expert

systems to make writing rules easier and to make programs more understandable

for users and domain experts. The term was originated by Zadeh (1972), and

hedges have been developed and used to great effect by Cox (1999), which is

highly recommended. Hedges are indispensible to the builder of fuzzy expert

systems in the real world. There are several types of hedges, of which we will con-

sider the two most important.

Figure 4.6 Membership functions of fuzzy numbers A, A0, B, and B0. B0 is obtained by

composing A0 with (A AND B).
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One type of hedge, applied to scalar numbers, changes the scalar to a fuzzy

number with dispersion depending on the particular term used. Thus, “nearly 2”

is a fuzzy number with small dispersion, and “roughly 2” has a considerably

wider spread. The precise meaning of the hedge term will vary from one expert

system shell to another.

In FLOPS, each hedge term is associated with a percent of the central value, and

specifies the spread of the fuzzy number from the central value to the 0.5 truth value

point. [The reason the spread is specified at the 0.5 truth value rather than the support

is that normal (bell-shaped, Gaussian) fuzzy numbers in theory have infinite support,

and in practice a large support depending on the precision of the floating-point

numbers in a particular implementation.]

FLOPS hedges of this type are not untypical of those employed by Cox. The hedge

terms and corresponding membership function spread are given in Table 4.1, and are

TABLE 4.1 Hedges that Create Fuzzy Numbers

Hedge Spread, þ/2 % of central value at

membership 0.5

nearly 5%

about 10%

roughly 25%

crudely 50%

Figure 4.7 A fuzzy 5 created by various hedges.

TABLE 4.2 Hedges to Modify Truth Values

Hedge Power to which truth value is raised

slightly cube root

somewhat square root

very square

extremely cube
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shown graphically as a fuzzy 5 in Figure 4.7. We assume that the fuzzy number is

symmetrical, with a single value of the argument (the central value) at which the

membership is one. The shape of the resulting fuzzy number is assumed separately

specified, and may be linear, s-shaped (piecewise quadratic) or normal.

The second type of hedge is applied to truth values. “very Small” reduces the

truth value of Small; “somewhat Small” increases the truth value. Usually, the orig-

inal truth value is raised to a power greater than 1 for terms that reduce truth values,

and less than 1 for terms that increase truth values. Table 4.2 defines hedges for

modification of truth values, and Figure 4.8 gives a sample membership function

modified by hedges. Again, the hedges employed by FLOPS are similar to those

used by Cox.

As shown in Figure 4.8, hedges can operate on membership functions producing

modified membership functions, and can be used to modify clauses in fuzzy

propositions. Consider the fuzzy proposition

speed is Fast

Figure 4.8 A membership function modified by hedges.

Figure 4.9 Membership function Very_Small created without hedges.
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This can be modified by substituting very Fast, somewhat fast, and so on. If the grade

of membership of Fast in speed is 0.5, the truth value of (somewhat Fast) would be

0.51/2 ¼ 0.707, of (slightly Fast) 0.51/3 ¼ 0.794, of (very Fast) 0.52 ¼ 0.25, and of

(extremely fast) 0.53 ¼ 0.125.

However, we have found that in practice such hedges applied to membership

functions can be confusing and inflexible. It is possible to use separate linguistic

terms such as Slow and Very_slow, each with its own membership function,

rather than use hedges applied to membership functions. For example, the member-

ship function for Very_Small in Figure 4.9 cannot be created by using the usual

power-based hedges just described.

4.5 FUZZY ARITHMETIC

Fuzzy arithmetic is concerned with the addition, subtraction, multiplication, and

division of fuzzy numbers. There are two methods of performing fuzzy arith-

metic: (1) from the extension principle; and (2) using alpha-cuts and interval

arithmetic.

4.5.1 Extension Principle

The extension principle, due like so much of fuzzy theory to Lotfi Zadeh, is a power-

ful and very general tool used to fuzzify crisp operations, crisp equations, crisp

functions, and so on. To fuzzify arithmetic, let * denote addition, subtraction,

multiplication, or division of real numbers. We wish to compute P ¼ M * N for

fuzzy number M and N producing fuzzy number P. If * is division we need to

assume that zero does not have positive membership in the divisor. So, for

M 4 N we assume N(0) ¼ 0. The membership function for P is determined using

the extension principle as follows:

P(z) ¼ supx,y{min(M(x), N( y))jx � y ¼ z} (4:40)

Suppose we wish to add a fuzzyM and a fuzzy N to yield fuzzy number P. Let us first

consider evaluating P(z ¼ 4). We consider all pairs of values of x and y that sum to

4. For each such x2 y pair, we calculate M(x) and N(y). We take the minimum of

M(x) and N(y). We now take the maximum of all these minima, and that is the value

of P(4).

If we can evaluate (4.40) analytically, we have a very general method for general-

izing crisp operators to fuzzy operators. However, unless this can be done analytic-

ally, the procedure is computationally unfriendly, involving two nested loops. So, let

us now present a second procedure that is more easily incorporated into computer

programs. After defining this second method, we discuss the relationship between

the two procedures.

72 FUZZY LOGIC, FUZZY SETS, AND FUZZY NUMBERS: II

TEAM LinG - Live, Informative, Non-cost and Genuine !



4.5.2 Alpha-Cut and Interval Arithmetic

First, we will discuss alpha-cuts and then interval arithmetic. If a [ (0, 1�, the alpha-

cut of A, a fuzzy subset of universal set X, written A½a�, is defined to be the crisp set

{xjA(x) � a}. This set is the collection of all the x in X whose membership value is

at least alpha. We must separately define A[0], because otherwise it will be all of

X. A[0] will be simply the base of the fuzzy number. For the triangular fuzzy

number A in Figure 3.1, A[0] ¼ [a, c]. For the s-shape fuzzy number in Figure 3.2

A[0] ¼ [a, d]; and for the trapezoidal fuzzy number in Figure 3.4 A[0] ¼ [a, c].

For the normal fuzzy number in Figure 3.3, the support is infinite. Practically,

if we assume A(x) is effectively 0 for x � a� 3s and for x � aþ 3s, then

A½0� ¼ ½a� 3s, aþ 3s�.

The core of a fuzzy number is the set A[1] and the support is the interval A[0]. A

fuzzy set is normal if the core is nonempty. All our fuzzy number will be normal.

The alpha-cut of a fuzzy number is always a closed, bounded, interval. We will

assume that A[0], for normal fuzzy numbers, is the interval given above. So we

will write A½a� ¼ ½a1(a), a2(a)� for fuzzy number A, where the ai(a) give the end

points of the interval that are, in general, functions of alpha. For example, if A is

a triangular fuzzy number with base the interval [1, 4], vertex at x ¼ 2, and straight

line segments for its sides, then we see A½a� ¼ ½1þ a, 4� 2a� for alpha in [0, 1]. If

A½0� ¼ ½a1, a2�, then we write: (1) A . 0 if a1 . 0; (2) A � 0 for a1 � 0; (3) A , 0

means a2 , 0; and (4) A � 0, whenever a2 � 0.

Next we need to review the basic ideas of interval arithmetic. Let [a, b] and [c, d]

be two closed, bounded, intervals. If * denotes addition, subtraction, multiplication

or division of real numbers, then we extend it to interval as follows:

½a, b� � ½c, d � ¼ {x � yjx in ½a, b�, y in ½c, d �} (4:41)

It follows that

½a, b� þ ½c, d � ¼ ½aþ c, bþ d � (4:42)

½a, b� � ½c, d � ¼ ½a� d, b� c� (4:43)

½a, b� 4 ½c, d � ¼ ½a, b� �
1

d
,
1

c

� �
(4:44)

if zero does not belong to [c, d], and

½a, b� � ½c, d � ¼ ½k, n�, for

k ¼ min{ac, ad, bc, bd}

n ¼ max{ac, ad, bc, bd}

Multiplication and division may be simplified if we know a . 0, c . 0 or

b , 0, c . 0, and so on. For example, if a . 0 and c . 0, then

½a, b�½c, d � ¼ ½ac, bd �
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but if b , 0 and c . 0 we see that

½a, b�½c, d � ¼ ½ad, bc�

Now we may return to fuzzy arithmetic. For fuzzy numbers A and B let

A½a� ¼ ½a1(a), a2(a)�, B½a� ¼ ½b1(a), b2(a)�

Using the alpha-cut and interval arithmetic method we first calculate P ¼ Aþ B

as P½a� ¼ A½a� þ B½a� ¼ ½a1(a)þ b1(a), a2(a)þ b2(a)�. This, of course, gives

alpha-cuts of the sum P. For P ¼ A2 B, we get P½a� ¼ ½a1(a)� b2(a), a2(a)�

b1(a)�. In multiplication P ¼ AB we find P as P½a� ¼ A½a�B½a�. If A . 0 and

B . 0, then P½a� ¼ ½a1(a)b1(a), a2(a)b2(a)�. When zero does not belong to the

support of B, then P ¼ A 4 B is defined and alpha-cuts of P are calculated as P½a� ¼

½a1(a), a2(a)� � ½1=b2(a), 1=b2(a)�. You are asked to complete some of these calcu-

lations in the problems for certain fuzzy numbers.

4.5.3 Comparison of Alpha-Cut and Interval Arithmetic Methods

The alpha-cut and interval arithmetic procedure is easily incorporated into computer

programs since we discretize it only computing for say alpha equal to 0. 0, 0.1, . . . ,
0.9, and 1.0. This is the method we will use for fuzzy arithmetic in this book.

It is well known that the two procedures compute the same value for Aþ B,

A2 B, A 4 B and A . B for fuzzy number A and B. However, this is not true for

the evaluation of all fuzzy expressions. For example, for the fuzzy expression

P ¼ (Aþ B)/A the two methods can calculate different answers for P. Even so,

we will be using the alpha-cut and interval arithmetic procedure in this book to

do fuzzy arithmetic.

4.6 COMPARISONS BETWEEN FUZZY NUMBERS

4.6.1 Using the Extension Principle

If A and B are two fuzzy numbers, we will need to evaluate the approximate com-

parisons A �, B, A �,¼ B, A �¼ B, A �.¼ B, A �. B and A �,. B, the

fuzzy equivalents of the conventional Boolean numerical comparisons supplied by

most computer languages. The truth value of any one of these comparisons will be a

number in [0, 1]. If either A or B is a single-valued scalar number, we simply replace

it by a singleton fuzzy number. (In FLOPS, at least one of the numbers to be com-

pared must be initially a fuzzy number.)

The simplest comparison to make is to compare A and B for equality. We use the

extension principle in Section 4.5.1, equation (4.40), for this comparison:

tv(A ¼ B) ¼ supx,y{min(M(x), N( y))jx ¼ y} (4:45)

Evaluating (4.45) is simpler than it looks for fuzzy numbers that are first mono-

tonic upward, then monotonic downward, as the argument increases; we look for the

highest point where the two fuzzy numbers intersect.
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We now consider approximate fuzzy numerical comparisons such as (A �, B).

This implies that we wish to compare fuzzy number A, shown in Figure 4.10, to

another fuzzy number that is less than C. However, the fuzzy literature does not

define such a fuzzy number; we now proceed to define a fuzzy number that is

approximately less than C. We first create a new fuzzy number C such that C is

not equal to A, or C ¼ NOT A, as shown in Figure 4.11.

Next, we create a masking fuzzy number D that is less than A in the Boolean

true–false sense. Our truth value for D(x) is 1 so long as A(x) is less than its

maximum with x increasing from �1; from there on, as x increases, D(x) is

0. Denote the value of x at the point where A(x) first achieves its maximum value

by x(Amax). This operation results in D , A shown in Figure 4.12.

We now calculate fuzzy number E that is approximately less than A by demand-

ing that E be (NOT A) AND D, shown in Figure 4.13.

To carry out the comparison, we simply test whether the fuzzy number E,,A, we

have created equals A using equation (4.45).

To carry out the comparison A �.¼ B, we create the fuzzy number F .¼ B by

ORing A and F , A, as in Figure 4.14.

Figure 4.11 A fuzzy number C, unequal to A ¼ NOT A.

Figure 4.10 A fuzzy number A.

4.6 COMPARISONS BETWEEN FUZZY NUMBERS 75

TEAM LinG - Live, Informative, Non-cost and Genuine !



4.6.2 Alternate Method

If A and B are two fuzzy numbers we will need to evaluate, in our fuzzy expert

system, the approximate comparisons

A �� B, A �, B, A �¼ B, A �= B, A �� B and A �. B

The truth value of any one of these comparisons will be a number in [0, 1]. We

will use the notation v( ) for this value. So, v(A �, B) is in [0, 1] and the truth

value associated with A �, B is v(A �, B); that is, tv(A �, B) ¼ v(A �, B).

We will first need to specify some auxiliary fuzzy sets and concepts before we

can define v( ). This section is based on Klir and Yuan (1995).

For a given fuzzy number A(x), we will construct four other fuzzy sets. Call the

core of A the interval over which the membership of x is one. If the core of A is

[m, m], a single number m, then set d ¼ m. If the core of A is an interval [a, b],

then d ¼ (aþ b)=2. Define the fuzzy set L to have membership value 1 on the

Figure 4.12 A fuzzy number D , A (in the Boolean sense); D(x) ¼ true if x , x(Amax),

else false.

Figure 4.13 A fuzzy number E �, A ¼ ,NOT A AND (E , 30) or E �,¼ A.
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interval (�1, d� and zero otherwise. Similarly, fuzzy set R has membership 1 on

½d, 1) and 0 otherwise. Then, define fuzzy sets

(,A) ¼ Ac > L using Tm

(��A) ¼ (�,A)< A using CL

(�.A) ¼ Ac > R for Tm

(��A) ¼ (�.A)< A for CL

We use CL for OR since (�,A) and A, and (�.A) and A, are maximally nega-

tively associated (see Section 4.4.1). Fuzzy sets (�,A) and �(�A) are shown in

Figure 4.15 for triangular fuzzy number A.

Figure 4.14 A fuzzy number E �,¼ A ¼ ,NOT A OR b , A, or E �,¼ A.

Figure 4.15 Fuzzy numbers A, triangular; �, A; and �,¼ A.
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If M and N are two fuzzy subsets of the real numbers ht(M, N) stands for the

height of their intersection. More formally,

ht(M, N) ¼ supx{min (M(x), N(x)}

Now, we may define v( ), shown in Figure 4.16.

Let us now return to the fuzzy proposition in Example 4 in Section 4.5. Suppose

pulse ¼ 56 and “around” 60 produces the triangular fuzzy number A with base on

the interval [45, 75], vertex at x ¼ 60, and it has straight-line segment sides. Then

the truth value of this fuzzy proposition is v(56, (,A)) ¼ (,A)(56), the membership

value of 56 in the fuzzy set (,A). The truth value is evaluated to be 0.27.

4.7 FUZZY PROPOSITIONS

Propositions in a fuzzy expert system are found in the antecedent of rules, where

their truth values are combined to yield the antecedent truth value.

Among the simpler propositions are those that test whether a datum exists, ignor-

ing its value. The proposition

x (4:46)

simply asserts that x exists; that is, it tests whether x has been assigned a value. The

truth of that proposition is the truth value of x. If, for example, x had been assigned a

value of 36 with truth value 0.75, the truth value of (4.31) would be 0.75. If x does

not exist, the proposition’s truth value is 0.

Most propositions test the value of a datum against some specified value. Prop-

ositions involving single-valued data have been discussed in Chapter 3, Section 3.5.

Here, we briefly review that discussion.

Figure 4.16 Truth value of proposition P ¼ (A �,¼ B). Shown are A, B, triangular fuzzy

numbers, and C, ,¼ B. Truth value tv(A �,¼ B) of proposition (A �,¼ B) is 0.7.

78 FUZZY LOGIC, FUZZY SETS, AND FUZZY NUMBERS: II

TEAM LinG - Live, Informative, Non-cost and Genuine !



A proposition involving only single-valued data (integers, floats, strings) is of the

form

P ¼ (value of datum)(comparison operator)(comparison value) (4:47)

and its truth value is

tv(P) ¼ tv(datum) AND tv(comparison) AND tv(comparison value) (4:48)

Another proposition tests the grade of membership of a member of a discrete fuzzy

set. For example,

size is Small (4:49)

where size is a discrete fuzzy set of which Small is a member. size is, of course, mul-

tivalued, having several members, of which Small is 1. The truth value of the entire

discrete fuzzy set size is 1; the truth value of the comparison is 1, since Small is a

member of size; and the truth value of Small is the grade of membership of Small in

size, say 0.523. The truth value of the proposition is then min(1, 1, 0.523) ¼ 0.523.

A more complex proposition is frequently used in fuzzy control:

x is fast (4:50)

where x is a scalar number and fast is a fuzzy number. The truth value of x might be

0.765 (although in the real world it is more likely to be 1); the truth value of the com-

parison is the grade of membership of x in the fuzzy number fast, say 0.654; and the

truth value of the fuzzy number itself is 1. The truth of the proposition is then

min(0.765, 0.654, 1) ¼ 0.654.

These comparisons may involve hedges. For example, (4.34) could be modified

to read

x is very fast (4:51)

When evaluating (4.35), we must include the effect of the hedge very. Suppose that

very has been defined as squaring membership values. very fast is another fuzzy

number, obtained from fuzzy number fast by squaring its grades of membership.

Since the grade of membership of x in fast was 0.654, the grade of membership

of x in very fast is 0.6542 ¼ 0.428. The truth value of (4.35) is then min(0.765,

0.428, 1) ¼ 0.428.

Similarly, if (4.33) had read

size is somewhat Small (4:52)

and somewhat were defined to be a square-root transformation, the truth value of

(4.52) would be min (1, 1,
ffiffiffiffiffiffiffiffiffiffiffi
0:523

p
¼ 0:723) ¼ 0:723.
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Fuzzy numbers may be specified as literals using hedges. For example, prop-

osition (4.50) could have been written

x is about 70 (4:53)

in which the hedge about changes 70 into a fuzzy number with dispersion say þ/2
10% around 70.

Propositions may include approximate comparisons; for example, in

speed �,¼ roughly 30 (4:54)

the truth value of the comparison is obtained by comparing speed with a fuzzy

number ,¼ about 30, as discussed in Section 4.7. Suppose speed is 35, with

truth value 1. The membership of 35 in (,¼ roughly 30) might be 0.7, and

the truth value of the fuzzy number itself is 1. The truth value of the proposition

is then min(1, 0.7, 1) or 0.7.

Propositions may also involve truth values directly. For example, suppose we

have a discrete fuzzy set size that has a member Large. We can test the grade of

membership of this discrete fuzzy set member directly, by using the notation size.-

Large to represent Large’s grade of membership, in proposition

size.Large ,¼ 0:250 (4:55)

The truth value of the grade of membership itself is 1, as are the truth values of

all truth values. If size.Large is 0, the truth value of the comparison is 1, as is the

truth value of the literal 0.250. The truth value of the proposition is then

min(1, 1, 1) ¼ 1.

A similar proposition is

x.cf ¼ 0 (4:56)

which tests whether the truth value of x is 0. Truth values so tested have themselves a

truth value of 1. The truth value of the proposition (x.cf ¼ 0) is then the fuzzy AND

of the truth value of x.cf, one; the truth value of the Boolean comparison ¼ 1 or 0;

and the truth value of 0, set to one by default since it is a literal.

The truth value of complex logical propositions is obtained simply by using the

logical connectives AND, OR, and NOT as indicated in Section 4.2.1, evaluating

from left to right, using parentheses if necessary. For example, suppose the

complex logical proposition P is given by

P ¼ A AND B OR NOT C (4:57)
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in which the truth values of A, B, and C are, respectively, 0.6, 0.8, and 0.3. Evaluat-

ing from left to right, we have

tv(A) ¼ 0:6

tv(A AND B) ¼ min(0:6, 0:8) ¼ 0:6

tv(NOT C) ¼ 1� 0:3 ¼ 0:7

tv(A AND B OR NOT C) ¼ min(0:6, 0:7) ¼ 0:6

(4:58)

If parentheses are permitted in propositions, we evaluate as in (4.41) within each pair

of parentheses, from inmost to outermost as conventional in language compilers.

In the theory of fuzzy logic, Klir and Yuan (1995, p. 220 ff.) define four types of

fuzzy propositions. The first type is a proposition of the form given above in (4.34);

the second type is a proposition of the form in (4.35).

The third type of proposition is the generalized modus ponens discussed in

Section 4.3:

if X is A then Y is B (4:59)

and the fourth type is the same except that a hedge is introduced:

if X is A then Y is very B (4:60)

While in logic the modus ponens is indeed a proposition, as we have seen in

Section 4.3 such propositions are not usually useful in a fuzzy expert system. In

the theory of fuzzy logic, Klir and Yuan (1995, p. 220 ff.) define four types of

fuzzy propositions. The first type is of the form

temperature is high (4:61)

where temperature is a single-valued attribute, and high is a membership function.

The truth value of this proposition is the grade of membership of temperature in

high.

The second type is of the form

temperature is very high (4:62)

where “very” is a modifier, a hedge of the type that modifies a truth values such as,

for example, by replacing the truth value by its square root.

The third type of proposition is the generalized modus ponens discussed in

Section 4.3:

if X is A then Y is B (4:63)
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and the fourth type is the same except that a hedge is introduced:

if X is A then Y is very B (4:64)

While in logic the modus ponens is indeed a proposition, as we have seen in

Section 4.3 we do not find such propositions useful in a fuzzy expert system.

4.8 QUESTIONS

4.1 Using the property of associativity, derive equations (4.15)–(4.19) for n ¼ 3.

4.2 Show that any t-norm will give the AND table, Table 3.1, if x and y are only

0 or 1.

4.3 Show that tv(P OR Q) ¼ C(tv(P),tv(Q)) for any t-conorm.

4.4 Verify that the laws of non-contradiction and excluded middle hold if you use

TL and CL .

4.5 Elkan’s proof that the Zadehian logic fails except for crisp truth values (0 or 1)

is based on the a set of two logical propositions, P and Q, which are equivalent

for classical logic:

P: NOT(A AND NOT B)

Q:B OR(NOT A AND NOT B)

Show that these propositions are not equivalent using Zadehian logic (4.1) and

(4.7), but are equivalent using correlation logic. Use the Zadehian min–max

logic as a default, but use the bounded logic when appropriate.Hint: Alternatively,

reformulate Q using the distributive law to isolate B OR NOT B. Then, Try to get

an analytic solution. Alternatively, calculate truth tables for P and Q using truth

values of A ¼ 0.25 and B ¼ 0.5, first using Zadehian min–max logic, and then

using min–max logic as a default and bounded logic where appropriate.

4.6 Consider the fuzzy numbers A, A0, and B, using Figure Question 4.6:

Using the theory of approximate reasoning and the fuzzy modus ponens,

calculate B0 from equation (4.30), B0 ¼ A0 � (A ! B) for selected values of

x. Hint: Write a computer program for this purpose. Select x values of

1,2,3, . . . , 16. Calculate A, Apr, B, the matrix A ! B. Then use min–max

composition of A0 with the matrix (A ! B) to obtain the vector B0.

4.7 Consider two ways of defining the dispersion of a triangular fuzzy number:

a. Dispersion of U ¼ ,central value., ,absolute dispersion.,

,relative dispersion., where the net dispersion ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
,absolute dispersion.2 þ (,central value. �,relative dispersion.)2

q
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b. Dispersion of U ¼ ,hedge. �,central value., where the hedge “nearly”

represents the decimal number 0.05 or 5%, “about” represents 0.1,

“roughly” represents 0.25, and “crudely” represents 0.5.

What are the advantages and disadvantages of these two methods?

4.8 Using the fuzzy numbers A and A0 defined in Problem 4.4, add A and A0 by

a. The extension principle.

b. Alpha cuts.

c. Interval arithmetic.

Figure Question 4.6 Fuzzy numbers A, A0, and B.
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5 Combining Uncertainties

5.1 GENERALIZING AND AND OR OPERATORS

This chapter will deal with the problem of combining truth values. In Chapter 3, we

dealt with definitions of the AND, OR, and NOT operators for multivalued logics,

and pointed out that many definitions of these operators can be defined, which

reduce to the classical definitions for crisp logic for crisp truth values. In Chapter 4,

we presented the mathematics of a family of fuzzy logics that obey the classical laws

of Excluded Middle and Non-Contradiction. In this chapter, we will present a

general treatment of combining truth values, with the objective of calculating the

truth value of rule antecedents. In particular, we discuss use of prior association

between operands as a guide to selecting which fuzzy logical operators to use.

The concept of truth-functional operators is based on the idea that the result of

applying these operators will yield a value that depends only on the values of the

operands. As we have seen in Chapter 3, any of the three definitions of AND and

OR are truth functional, and may all give different results; however, we are not

given any basis on which to make a choice among the available operators. Certainly,

the Zadehian min–max operators are used more often than any other, for a variety of

reasons, including some rather nice mathematical properties, and in the real world

they can usually be made to work.

Let us back up and ask what properties the classical AND, OR, and NOT oper-

ators posses. Among the most basic are the Law of the Excluded Middle and Law of

Non-Contradiction. These can be quite simply formulated:

Excluded middle: P AND NOT P ¼ false ¼ 0 (5:1)

Non-Contradiction: P OR NOT P ¼ true ¼ 1 (5:2)

Unfortunately, all the definitions for the AND, OR, and NOT operators except the

bounded sum fail to obey these laws. While this can be disturbing to some

people, many fuzzy mathematicians seem to regard it as a virtue. In Chapter 4,

we developed the mathematical theory for a family of fuzzy logics that does obey

these laws; in this chapter, we discuss the origin of this development and its utility.
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5.1.1 Correlation Logic: A Family of Fuzzy Logical Operators that

Obeys Excluded Middle and Non-Contradiction Laws

We felt that the inability to make a rational choice of logical operators and the

failure to obey the laws of Excluded Middle and Non-Contradiction creates a

rather unsatisfactory situation. Spurred by a paper by Ruspini (1982), we investi-

gated what effect prior associations between the operands of the logical operators

might have on the choice of a proper set of operators. We adopted a model for fuzzi-

ness presented by Klir and Yuan (1996, pp 283ff). In this model, a number of persons

were asked whether a proposition were true, and were restricted to true (1) or false

(0) responses. The truth value of the proposition was considered to be the average of

all responses. As the number of observers increases without limit, the granularity of

our estimate of the truth value vanishes; the estimate of the truth value becomes the

probability that an observer would say that the proposition is true. The following

treatment is taken from Buckley and Siler (1998b, 1999).

We extend Klir and Yuan’s model just above to two propositions simultaneously

presented, and find the probability that an observer would report that P is true; that P

AND Q is true; that P OR Q is true; and the association between the individual

reports of the truth of P and of Q. Table 5.1 gives a sample of such reports.

We found that if the truth values of P and Q were positively correlated as strongly

as possible, the Zadehian AND/OR operators were correct in predicting the mean

value for P AND Q and P OR Q. If the individual P and Q truth values were maxi-

mally negatively correlated, the bounded sum operators gave correct results. If the

individual P and Q truth values were uncorrelated, the product-sum operators gave

correct results, as would be expected from elementary probability theory. In

Table 5.1, the correlation coefficient is 0, and the truth values obtained for P

AND Q and OP OR Q are those we would expect from probability, assuming

independence.

This approach yielded a family of logical operators with a single parameter; the

prior correlation coefficient between the operands. We concluded that a rational

TABLE 5.1 Sample Table of Observer Reports of Truth

of Two Propositions, P and Qa

Observer P Q P AND Q P OR Q

1 0 1 0 1

2 1 0 0 1

3 1 1 1 1

4 1 1 1 1

5 0 0 0 0

6 0 0 0 0

7 0 1 0 1

8 1 0 0 1

Average 0.500 0.500 0.250 0.750

aCorrelation P and Q ¼ 0.

86 COMBINING UNCERTAINTIES

TEAM LinG - Live, Informative, Non-cost and Genuine !



choice among logic operators could be based on information regarding such associ-

ations. The family of AND/OR operators returns the truth values of P AND Q and P

OR Q given the truth values of P(a) and Q(b) and a single parameter, r, the corre-

lation coefficient between prior values of a and b.

We first place a restriction on the maximum and minimum permissible values of

the parameter r, ru, and rl, respectively, and from these restrictions derive a working

value for r, r 0. The reason for this is that the values of a and b may make some values

for r impossible. For example, if a ¼ 0.2 and b ¼ 0.6 it is impossible for these values

to be perfectly correlated. If the specified r is less than rl, then the formulas will use

the bounded sum operators; if the specified r ¼ 0, the formulas will use the sum-

product operators; if the specified r is greater than ru, the formulas will use the

Zadehian max–min operators. We first present the formulas for this family of

AND/OR operators, then present some numerical examples of their performance.

Since we are interested in implementing these operators on a computer, we will

present them as statements in BASIC.

ru ¼ (min(a, b)� a � b)= SQR(a � (1� a) � b � (1� b))

rl ¼ (max(a þ b� 1,0)� a � b)= SQR(a � (1� a) � b � (1� b))

if r . ru then r 0 ¼ ru else r 0 ¼ r

if r , rl then r 0 ¼ rl else r 0 ¼ r

aANDb ¼ a � bþ r � SQR(a � (1� a) � b � (1� b))

aORb ¼ aþ b� a � b� p � SQR(a � (1� a) � b � (1� b))

(5:3)

Table 5.2 gives some typical results of applying these formulas.

Of course, this family of operators is not truth-functional, since other information

is required besides the values of the operands. In many cases, that information is

lacking and the Zadehian operators are a good default for expert systems, provided

that we do not combine A and NOT A. They are the mathematical equivalent of the

“a chain is no stronger than its weakest link” common sense reasoning. Further, any

other multivalued logic limits the complexity of the rule antecedents that can be

used: If several clauses are ANDed together, the resulting truth value tends to

drift down to 0; if they are ORd together, the resulting truth value tends to drift up to 1.

TABLE 5.2 Examples of Application of Logic Operator Family

Using the Prior Correlation Coefficient

r a b r 0 aANDb aORb Resulting Logic

21 0.2 0.6 20.612 0 0.8 Bounded

0 0.2 0.6 0 0.12 0.68 Product

þ1 0.2 0.6 0 0.2 1 Max–min

21 0.4 0.8 20.612 0.2 1 Bounded

0 0.4 0.8 0 0.32 0.88 Product

þ1 0.4 0.8 0.408 0.4 0.8 Max–min
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There are two circumstances under which there is no question as to prior associ-

ations. If P and NOT P are the operands, they are maximally negatively associated; if

P and P are the operands, they are maximally positively correlated. If we want to use

multivalued logic, and wish to retain the laws of Excluded Middle and Non-

Contradiction, we can use any multivalued logic we please unless the equivalent

of P and NOT P or P AND P appear in the same proposition. We can save Excluded

Middle and Non-Contradiction by using the Zadehian max–min logic when com-

bining P and P, and by switching to the bounded-sum operator pair when combining

P and NOT P. (We might require rearranging the proposition to bring P and P

together, and to bring P and NOT P together.)

In most cases, we will not have prior information available on which to base a

choice of which logical operators we should employ. However, we can choose a

default set of operators. Let us assume that our observers share a common back-

ground. It would seem that in this case, they would tend to agree more than to dis-

agree. They might have more or less strict ideas as to when to say a proposition is

true, resulting in individually larger or smaller estimates as to the truth of P and of Q,

but if the observer who is more strict says that P is true, it seems likely that the less

strict observer would also say that P is true. (Our formulation provides for precisely

this contingency.) So it seems likely that the default correlation should beþ1, yield-

ing the Zadehian operators; indeed, many years of practice have shown that this

choice works.

5.2 COMBINING SINGLE TRUTH VALUES

The most important calculation of truth values takes place when the truth value of a

rule’s antecedent is evaluated. The basic unit of an antecedent is a clause. Several

types of clauses are shown in Table 5.3.

TABLE 5.3 Types of Clauses in a Rule Antecedent

Test Performed Example Truth Value

A. Test of truth value of member

of discrete fuzzy set

size is Small Grade of membership of Small in

discrete fuzzy set size

B. Test of attribute value against

a literal

age , 35 Truth value of age AND truth

value of comparison

C. Test of attribute value against

a previously defined variable

age , ,A1. Truth value of attribute AND

truth value of comparison

AND truth value of variable

,A1.

D. Test of attribute’s truth value

against a literal

age.cf . 0 Truth value of comparison

E. Test of attribute’s truth value

against a previously defined

variable

age.cf . ,X. Truth value of comparison AND

truth value of variable ,X.
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A. The truth value of “size is Small” is simply the grade of membership of Small in

discrete fuzzy set size. If this is 0.645, then the truth value of the clause is also

0.645.

B. Say the value of age is 32, and its truth value is 0.925. The truth value of the data

comparison, 32 �¼ fuzzy 35, might be 0.550. The truth value of the fuzzy 35

itself is 1.0 by default, since it is a literal. The truth value of the clause is then

min(0.925, 0.550, 1.0) ¼ 0.550.

C. As before, the truth value of age is 0.925. Say the variable ,A1. has pre-

viously been assigned the value 35 and truth value 0.495. The truth value of

the comparison would be 0.550 (as before). The truth value of the comparison

value is not 0.495. The truth value of the clause is then min(0.925, 0.550,

0.495) ¼ 0.495.

D. The attribute age.cf (the truth value of age) is 0.925 from B. just above. The

truth value of age.cf is 1.0. If age.cf is not 0, the truth value of the comparison

is 1. The truth value of the literal comparison value 0 is 1.0 by default. The truth

value of the clause is then min(1.0, 1, 1.0) ¼ 0.

E. Age.cf is 0.925 as above, and its truth value is 1.0. Say that,X. has value 0.5

and truth value 0.75. The truth value of the Boolean comparison is 1. The truth

value of the clause is then min(1, 1, 0.75) ¼ 0.75.

Antecedent clauses referring to the same declared data element are grouped

together into a pattern. We list such a pattern, with the truth values of its individual

clauses:

(in Data x <3 AND (y < 0 OR NOT size is Small))
(tv 1) (tv 0.8) (tv 0.23)

or

tv = (1 AND (0.8 OR NOT 0.23))
= (1 AND (0.8 OR 0.77))
= (1 AND 0.8)
= 0.8

5.3 COMBINING FUZZY NUMBERS AND

MEMBERSHIP FUNCTIONS

Fuzzy numbers and membership functions are fuzzy sets, and hence may be

combined logically. If Small, Medium, and Large are declared to be fuzzy

numbers, we might ask IF (profit is Small OR Medium), or perhaps

IF (profit is NOT Large), both requiring logical operations on fuzzy

numbers. Another example of combining fuzzy numbers logically is the combi-

ning a fuzzy (,2) and a fuzzy 2 in order to make the approximate comparison

x~<=2.
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Suppose we wish to combine the membership functions Medium and Large. We

define these two functions in Figure 5.1.

Assume that we have adopted the Zadehian AND (min) and OR (max) as

defaults. Figure 5.2 shows the fuzzy number that results from ORing Small and

Medium using the max OR operator.

The notch in Figure 5.2 is quite counterintuitive. To eliminate the notch, we intro-

duce here the notion of semantic inconsistency, first proposed by Thomas (1995). It

occurs because we are combining P and NOT P with an inappropriate logic. The

Zadehian max–min logic holds if the operands are positively associated as strongly

as possible. However, the membership functions for Small and Medium are not so

associated; they are semantically inconsistent, a notion introduced by Thomas

(1995), and the use of min–max logic here is probably invalid.

The proper logic is the correlation logic defined in Section 4.2.2. We simply cal-

culate the cross-correlation between the fuzzy numbers or weighted membership

functions being combined, over the area of overlap. We then OR the memberships

with the formulas in (5.3), using the cross-correlation as the default correlation

coefficient.

Figure 5.1 Membership functions Small and Medium.

Figure 5.2 Membership function Small OR Medium using min–max logic.
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Suppose that our basic membership functions are those shown in Figure 5.1, and

that rules have established the truth value of Small as 0.75 and that of Medium as

0.25. Then the functions we must combine are shown in Figure 5.3.

The correlation coefficient calculated over the area of overlap is 21. Using cor-

relation logic, the function Small OR Large is shown in Figure 5.4, which seems

intuitively much more acceptable than the functions ORd with max–min logic,

shown in Figure 5.5.

Once we begin to apply set-theoretic operations to fuzzy numbers, the failure to

obey the laws of Excluded Middle and Non-Contradiction can give quite counter-

intuitive results.

There may be restrictions on when the bounded operators can be fruitfully used;

this is a topic for future research. Now, control engineers have a great deal of experi-

ence in shaping membership functions using presently widely accepted logics, and

changing the logics used would invalidate that experience. We do not suggest such a

change for fuzzy control problems. There is no such backlog of experience in hand-

ling non-numeric data; in this case, we suggest using membership functions that add

Figure 5.3 Weighted membership functions Small and Medium.

Figure 5.4 A membership function Small OR Medium, using correlation logic.
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to one at every point, and using the bounded sum/difference logics when combining

membership functions.

FLOPS does not make the bounded sum operator available as such to the user,

although it is not difficult to compute the result and the reset command can be

used to set the antecedent confidence to the bounded sum confidence. However,

in computing the results of fuzzy comparisons involving the OR operator

(x � ,¼ Y or x � .¼ Y), the bounded sum operator is used internally in a

fashion transparent to the user.

There is an open question as to which logical OR should be used when combining

weighted membership functions prior to defuzzification. The Zadehian OR (max) is

commonly used for this purpose, but this tends to produced notched membership

functions similar to the notch in Figure 5.2. Control engineers are primarily inter-

ested in shaping a response surface, and usually use ad hoc methods; these

notches have not prevented them from obtaining a desired response. If, however,

we are interested in the combined curves to obtain grades of membership in a

concept rather than in a defuzzified value, the notches may be worse than annoying.

In general, we feel that for a reasonable family of membership functions, the mem-

bership function for the entire linguistic value obtained by ORing weighted individ-

ual functions should be convex. We define “reasonable” to be that adjacent functions

should intersect at no less than the 0.5 membership value, and that the ordered

grades of membership of the individual linguistic values should also be convex.

This subject is for future research.

5.4 BAYESIAN METHODS

Reverend Thomas Bayes derived his theorem in the eighteenth century, and

although mathematically irrefutable it has been attended by controversy ever

since. The eminent statistician R. A. Fisher stated that it was his opinion that

Bayesian methods are founded upon error, and should be totally rejected. It was

the pleasure of one of us to attend a meeting at which two papers on Bayesian

Figure 5.5 Weighted membership functions Small and Medium, ORd by min–max logic.
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methods were presented. The first paper was titled “The applicability of Bayes’

theorem to problems of medical diagnosis”; the second, that followed immediately,

was titled “The inapplicability of Bayes’ theorem to problems of medical diagno-

sis”. Bayes’ theorem requires knowledge of prior conditional probabilities, but

often that knowledge is lacking. What is in question is Bayes’ assumption of the

“equal distribution of ignorance” if prior probabilities are not known.

Bayes’ theorem has achieved some success in expert systems in the last 20 years,

and we will briefly describe it here.

The rule itself is based on conditional probabilities. We write the probability the

B is true given that P is true as p(BjP). Bayes’ rule reverses this, and is

p(AkjB) ¼ p(BjAk) p(Ak)= p(B) (5:4)

or eqivalently, since p(B) ¼
P

p(BjAi) p(Ai),

p(AkjB) ¼ p(BjAk) p(Ak)=
P

p(BjAi) p(Ai) (5:5)

In applying Bayes’ rule to inference, we say that Ak is a hypothesis we wish to test.

With the information we have acquired to date, p(Ak) is the probability that Ak is

true. Now, we uncover a new piece of evidence B. We know from past experience

that the probability that B is true varies with all the various possible hypotheses Ai ,

and have a table of prior knowledge of p(BjAi) and p(Ai) for all possible Ai. This

prior knowledge permits us to write Table 5.4.

Table 5.4 shows that our confidence in Ai can either increase or decrease as a

result of the new evidence B. It also illustrates the problem with Bayesian

methods; where do we get all that prior knowledge? Our table assumes a very

simple problem, with only one new piece of evidence and only three possible

hypotheses. In the real world, we almost always have many more pieces of evidence

and many more hypotheses. It is not often that we can accumulate reliable figures for

the prior knowledge Bayes’ theorem requires. Instead, subjective estimates are made

or some simple rule applied, such as the “equal distribution of ignorance”, which

assumes that all possibilities are equally likely. It is to the “equal distribution of

ignorance” that Fisher objected so violently.

TABLE 5.4 Sample Application of Bayes’ Rule to Updating

Confidence in P from New Evidence B

p(BjAi) p(Ai) p(BjAi) p(Ai)
pðAijBÞ ¼

pðBjAiÞpðAiÞP
pðBjAkpðAkÞÞ

0.2 0.3 0.06 0.15

0.4 0.5 0.2 0.5

0.7 0.2 0.14 0.35
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5.5 THE DEMPSTER–SHAFER METHOD

Dempster–Shafer methods (Dempster, 1967) use dual truth values: a lower level,

called belief, representing the extent to which the evidence supports a hypothesis;

and an upper level, called plausibility, representing the extent to which the evidence

fails to refute the hypothesis. These are closely analogous to the dual measures

necessity and possibility in fuzzy systems theory. The method is concerned with

combining evidence regarding the truth of a hypothesis from different sources.

Our presentation here is paraphrased from that of Jackson (1999), Chapter 21. We

seek to establish belief and plausibility of some set of hypotheses from evidence.

The representation and manipulation of possibility and necessity in rule-based

systems will be taken up in Chapter 8.

A hypothesis space in Dempster–Shafer theory is represented by Q, a space that

holds all the individual hypotheses hi. All hypotheses are assumed to be mutually exclu-

sive, and the set of hypothesesQ is assumed to be exhaustive. We assume that it is poss-

ible to obtain evidence that each single subset ofQ, A1, A2, . . . , is true. (A subsetAimay

be a single hypothesis, or may be the entire hypothesis set Q.) The hypotheses in each

subset may overlap those in other subsets. We also have pieces of evidence yi, included

in a setC. Each piece of evidence will point to a subset Ai ofQ that holds all the hypoth-

eses that are supported by yj; the subset Ai to which yj points is called a focal element.

Since the hypotheses are exhaustive, that is, that there is at least one hypothesis consistent

with every evidence, no evidence will point to a null set.

Key to the Dempster–Shafer method is the idea of a probability assignment. A

basic probability assignment (bpa) is defined as a function m(Ai) that maps each

subset Ai of the hypotheses to a value included in [0, 1]. The sum of all m(Ai)

over all subsets of Q is 1. The belief Bel in any focal element A is the sum of all

the basic probability assignments for all subsets of A:

Bel(A) ¼
X
B.A

m(B) (5:6)

The plausibility Pls of A represents the evidence is consistent with A:

Pls(A) ¼
X
A>B

m(B) (5:7)

The importance of the Dempster–Shafer method is that it furnishes a method of

combining beliefs based on different evidence. Let Bel1 and Bel2 denote to belief

functions. To these belief functions there will correspond two basic probability

assignments, m1 and m2. We now wish to compute a new basic probability assign-

ment m(A) ¼ m1 � m2(A) and a new belief Bel(A) ¼ Bel1(A) � Bel2(A) based on

the combined evidence. Dempster’s rule is

m(A) ¼ m1�m2 ¼
X

x>y¼A

m1(X)m2(Y) 1�
X

X>Y¼0

m1(X)m2(Y)

 !
(5:8)

Bel(A) ¼ Bel1 � Bel2 can now be computed by (5.8).
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We might also wish to combine evidence from two different sources. [Our treat-

ment of this topic is taken from Klir and Yuan (1995), pp 183 ff.] We need basic

probability assignments m1 and m2 for the set of all hypotheses and for all its

subsets, the power set of the set of hypotheses Q. There is no unique way of com-

bining the evidence, but a standard way is given by

m1,2(A) ¼
X

B>C¼A

m1(B) �m2(C)=(1� K) (5:9)

where

K ¼
X

B>C¼0

m1(B) �m2(C) (5:10)

Klir and Yuan (1996) also give a simple example of Bayes’ method to a problem

of the origin of a painting. They have three hypotheses: the painting is by Raphael

(hypothesis R); by a disciple of Raphael (hypothesis D); or a counterfeit (hypothesis

C). Two experts examine the painting, and provide basic probability assignments m1

and m2, respectively, for the origin of the painting; R, D, C, R < D, R < C, D < C,

and R < D < C. Table 5.5 shows the basic assignments m1 and m2, the correspond-

ing measures of belief Bel1 and Bel2, and the combined evidence m1,2 and belief

Bel1,2 using the Dempster–Shafer formulas.

An advantage of Dempster–Shafer over Bayesian methods is that Dempster–

Shafer does not require prior probabilities; it combines current evidence.

However, a great deal of current evidence is required for a sizeable set of hypoth-

eses, and if this is available the method is computationally expensive. For fuzzy

expert systems, there is an important failure of Dempster–Shafer; the requirement

that the hypotheses be mutually exclusive. Since the members of fuzzy sets

are inherently not mutually exclusive, this raises doubts as to the applicability of

Dempster–Shafer in fuzzy systems. Nevertheless, Baldwin’s FRIL system

(Baldwin et al., 1995) uses a generalization of Dempster–Shafer to good effect.

TABLE 5.5 Example of Dempster–Shafer Method

Focal

Elements

Expert 1 Expert 2

Combined

Evidence

m1 Bel1 m2 Bel2 m1,2 Bel1,2

R 0.05 0.05 0.15 0.15 0.21 0.21

D 0 0 0 0 0.01 0.01

C 0.05 0.05 0.05 0.05 0.09 0.09

R < D 0.15 0.2 0.05 0.2 0.12 0.34

R < C 0.1 0.2 0.2 0.4 0.2 0.5

D < C 0.05 0.1 0.05 0.1 0.06 0.16

R < D < C 0.6 1 0.5 1 0.31 1
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5.6 SUMMARY

A problem faced by users of multivalued logics is to select which of a wide variety

of the logical operators AND and OR to use in evaluating a complex fuzzy logical

proposition such as those found in the antecedent of fuzzy rules. [Almost everyone

uses the same operator for NOT: NOT A ¼ 12 truth(A).]

Almost all definitions of the AND and OR logical operators fail to obey the clas-

sical laws of Excluded Middle (P and NOT P ¼ 0) and Non-Contradiction (P OR

NOT P ¼ 1), which some find disconcerting. The Zadehian max–min logic has

the advantage that it is idempotent (A AND A ¼ A, A OR A ¼ A) and there is

an enormous amount of experience with it. In an attempt to rescue the classical

laws for fuzzy logic, we devised a family of operators for AND and OR that pre-

serves the classical laws. The family has one parameter, the correlation coefficient

between the truth values of the operands obtained either from past experience or

from the structure of the logical expression being evaluated, if the expression con-

tains both A and NOT A, where A is a logical proposition.

If the expression being evaluated does not include both a proposition and its

negation, and if there is insufficient historical data to establish a reliable correlation

coefficient between elements of the complex proposition, the user has a free choice

of any operator pair for AND and OR, without violating either excluded middle or

non-contradiction. We suggest that the Zadehian max–min operator pair is a

desirable default. The Zadeh operators have the nicest mathematical properties;

there is a great deal of experience with them; and they do not restrict the complexity

of rule antecedents.

The most important need for fuzzy logic is in evaluating the antecedent of a rule.

We list five types of antecedent clauses and discuss the evaluation of their truth

values: test of truth value of discrete fuzzy set member; test of attribute value

against a literal; test of attribute value against previously defined variable; test of

attribute’s truth value against a literal; and test of attribute’s truth value against a

previously defined variable. For an antecedent clause of the type

A (comparison operator) B

the truth value of equal to the truth value of A; the truth value of the comparison; and

the truth value of B. In many cases, such as literal values for B, the truth value of B

or C will be one by default.

Fuzzy numbers may be combined in a similar fashion, except that the truth values

are no longer scalars, but are functions of numbers from the real line. Suppose that

fuzzy number A and B are defined as a(x) and b(x), where a(x) and b(x) are the

grades of membership of x in A and B, respectively. Then the fuzzy numbers

C ¼ A AND B, and D ¼ A OR B are defined by

C = A AND B, c(x) = a(x) AND b(x) for all x on real line
D = A OR B, d(x) = a(x) OR b(x) for all x on real line
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In effect, we calculate the union (or intersection) of two fuzzy numbers point by

point.

ANDing or ORing fuzzy numbers using the Zadehian max–min logic can give

rather peculiar results. Of particular interest is the combining of fuzzy numbers

such as in “less than OR equal to”, useful in approximate numerical comparisons.

While there is more theoretical work to be done here, the use of the concepts in

the parameterized family of logics in Section 5.1.1 can produce more sensible

results, as shown in Figures 5.1–5.3, since the laws of Excluded Middle and

Non-Contradiction are preserved.

5.7 QUESTIONS

5.1 What properties do the classical logic operators posses that are not shared by

fuzzy logic operators?

5.2 When combining the fuzzy numbers A and NOT A, what fuzzy logical oper-

ators should be used?

5.3 When combining the fuzzy quantities A and A, what fuzzy logical operators

should be used?

5.4 Should the bounded sum and difference operators be used when combining

semantically inconsistent membership functions in

a. Fuzzy control applications?

b. In general-purpose fuzzy reasoning applications?

5.5 Temperature is a scalar whose value is 78 and whose truth value is 0.6. What

are the truth values of the following antecedent clauses?

a. “Temperature ¼ 75”

b. “Temperature is 78”

c. “Temperature is ,X.”

d. “size is Large”. (The grade of membership of Large in fuzzy set size is

0.356.)

e. “Temperature.cf . 0.5”?

5.6 We have two fuzzy numbers, A and B, shown below in Figure

Question 5.6.

a. What is the truth value of the proposition “A �¼ B”?

b. Of the proposition “A �, B”?

c. Of the proposition “A �.¼ B”?

5.7 Using the fuzzy numbers A and B in Question 5.6, we wish to construct the

fuzzy numbers A AND B and A OR B, with the min–max logic as our

default. Should we use min–max or the bounded operators in combining

these two fuzzy numbers?
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5.8 Assume that the fuzzy numbers A and B in Question 5.5 are in fact member-

ship functions used to describe the same numeric quantity. Should we use the

default min–max or the bounded operators in combining these two fuzzy

numbers?

5.9 What is the main problem with the use of Bayesian methods?

5.10 What is the relation between Dempster–Shafer methods and fuzzy logic?

5.11 In the lack of any knowledge about a hypothesis, what is its possibility? Its

necessity?

Figure Question 5.6 Two fuzzy numbers.
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6 Inference in an Expert System I

6.1 OVERVIEW

In this chapter, we are concerned with the theory of the fuzzy reasoning process;

drawing conclusions from data and rules that relate data to conclusions, under

conditions of uncertainty, ambiguity, and contradictions. This is a very dynamic

process; conclusions reached in early stages of the reasoning process may be, and

usually are, modified or invalidated as the process continues from one step to

the next.

The process of drawing conclusions from existing data is called inference; we

infer new truths from old. Of course, classical logic propositions have only two

truth values, true or false, the process of inference is simplified as compared to

fuzzy logic, where we have to be concerned not only with propositions but also

with their truth values. Accordingly, both Chapters 6 and 7 are concerned with

the ways with which we can determine new truth values.

Much of the literature on fuzzy mathematics is concerned with possibility, a

measure of the extent to which the data fail to refute a conclusion. In the real

world, we are primarily concerned with necessity, a measure of the extent to

which the data support a conclusion. The reasoning process of establishing necess-

ary conclusions is not the same as the process of establishing possible conclusions.

For example, when we initialize possible truth values in the lack of any data, we set

them to 1; but when we initialize necessary truth values in the lack of any data,

we set them to 0. When working with possibility, the fuzzy modus ponens using

the implication operator is an important tool; when working with necessity, we

employ t-norms rather than the implication operator.

Klir and Yuan (1995, Chapter 8) deal with Fuzzy Logic and various schemes of

inference. Unfortunately, their presentation is not geared to the different modes of

inference necessary in a rule-based system for fuzzy reasoning. Baldwin et al.

(1995) present a discussion of inference in a Prolog system of depth-based search

with backtracking, as used in their expert system Fril, which employs backward-

chaining Horn clauses. Both of these references deal with approaches sufficiently

different from that necessary in FLOPS so that in the next two chapters (Chapters

7 and 8) we essentially develop our own theory from scratch.

Chapters 6 and 7 assume we are working with necessity rather than possibility

unless otherwise stated, and are concerned with establishing the process under
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which modification of data and truth values may take place. Aside from initializa-

tion, these modifications will usually take place when a rule is fired, and are per-

formed by consequent instructions. We are specifically concerned with the

question of the conditions under which we may permit these consequent instructions

to be executed. While the consequent instruction (then) “size is Small” may be

viewed as a proposition, viewing it as an instruction is perhaps pragmatically

more direct.

In the early days of FLOPS, we used the term “confidence” rather than the

term “truth value”, and we continue to use these terms interchangeably. Old habits

die hard.

In FLOPS, each rule has an associated truth value; by default, each rule is

assumed to have full confidence unless otherwise specified. A rule-firing threshold

is effective, either specified or set by default. In general, a rule is considered fireable

if the antecedent confidence is above the rule-firing threshold; if the rule is actually

fired, the consequent instructions are carried out with a confidence equal to the fuzzy

AND of the antecedent confidence and the rule confidence.

6.2 TYPES OF FUZZY INFERENCE

We list three types of rule-based inference: monotonic, in which consequent truth

values may increase but not decrease; non-monotonic, in which consequent truth

values may increase or decrease; and downward monotonic, in which consequent

truth values may decrease but not increase. We define four methods of determining

consequent truth values from antecedents, including approximate reasoning. We list

three desirable properties for each of the three reasoning types. We show that the

first three methods possess all desirable properties for the reasoning type for

which they were designed, but approximate reasoning fails to possess all desirable

properties for any reasoning type.

We will not be concerned with evaluating the truth value of the rule antecedent;

we will assume that this has been determined by the methods of Chapters 3 and 4.

When the antecedent has been found to be sufficiently true, we are ready to execute

the consequent of the rule.

There are many possible consequent instructions, including creation, modifi-

cation and input or output of data, direction of the flow of the program by metarules,

debugging instructions, and so on. Here, we will be concerned only with instructions

that change or create values or truth values of data; the other instruction types are

ancillary to the main purpose of the program, which is to reason from data to

conclusions.

6.3 NATURE OF INFERENCE IN A FUZZY EXPERT SYSTEM

Inference in an expert system involves the modification of data, either its value or its

truth value or both, by rules. Whether modification of the value of a datum is
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permitted or not depends on its existing truth value, the truth value of the new value,

and the type of inference being used. Creation of new data is always permitted; the

only question here is the confidence that will be assigned to any values specified in

the new datum’s value. Since truth values are so important here, we first take up the

modification and assignment of truth values; following that, modification of the

value of data will be discussed.

Since inference is carried out by rules, we first review the structure of fuzzy rules.

The most compact form of a rule is

IF (P) THEN (Q) (6:1)

in which P (the antecedent) is a fuzzy proposition, and Q (the consequent) is a set of

instructions to be carried out if the rule is fired.

The antecedent proposition will make some assertion(s) about data. These asser-

tions may be very simple (that a given datum exists, or even more simply an asser-

tion whose truth value is always true). A somewhat less simple assertion is that the

truth value of a datum is true. Very commonly, an antecedent proposition will

involve a comparison between value or truth value of a datum and that of either a

literal or another datum. Most commonly the antecedent will be a complex pro-

position made up of two or more elemental propositions connected by AND, OR,

and NOT connectives. In all cases, evaluation of the antecedent will yield a

single truth value.

There are many types of consequent instructions. In this section, we are interested

only in those instructions that modify data.

There are two kinds of data modification. In the first kind, which applies only to

single-valued attributes of types integer, float and string, both the datum and its truth

value may be changed. In the second kind, which applies to both single- and multi-

valued attributes, only truth values are modified. Without loss of generality we may

consider rules that modify truth values; if a modification of a truth value is per-

mitted, modification of the value of a single-valued attribute is also permitted.

A rule that modifies truth values may be written as

IF (P) THEN (B0 ¼ B) (6:2)

P is the antecedent as before; B is an existing datum; and B0 is a revised datum, with

a different truth value. Our special interest is in deciding whether or not modification

of a truth value is permitted

A further development of rule form (6.2) reflects an antecedent that compares

data values. In that case, we have

IF (A0 ¼ A) THEN (B0 ¼ B) (6:3)

in which A and B are specified prior values, and A0 is an observed new value, usually

different from the prior value of A. If A is a fuzzy set, then A0 must be defined on the
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same universe as A; similarly, if B is a fuzzy set, then B0 must be defined on the same

universe as B.

6.4 MODIFICATION AND ASSIGNMENT OF

TRUTH VALUES

If the antecedent truth value of rule (6.2) is P, the general principle is that we execute

the consequence B with confidence P. Let the modified truth value of B be B0. We

have three possible types of inference: monotonic, non-monotonic, and downward

monotonic. In monotonic inference, the truth value B0 may increase or remain

unchanged, but not decrease; in non-monotonic inference, the truth value may

increase, decrease, or remain unchanged; and in downward monotonic inference,

the truth value may decrease or remain unchanged but not decrease.

The rule itself is assigned a truth value, say r. (By default, r is 1.) The antecedent

confidence is modified before executing the consequent instructions by replacing P

with P AND r to yield the posterior confidence, where usually the Zadehian AND or

minimum is used. To avoid cumbersome notation in this chapter, we will assume

that whenever the antecedent truth value appears, it will have been ANDed with

the rule truth value (by default 1).

6.4.1 Monotonic Inference

In monotonic inference, we assume that the existing truth value of B is firmly

based, and cannot be reduced by any new information. (As is customary in AI,

we assume that the term unqualified term “monotonic” means that facts believed

true will not be invalidated, i.e., truth values of data will not be reduced.) This

amounts to the assumption that we have not made any erroneous conclusions up

till now. Any new information can only add to our confidence that the value of

B is valid.

Suppose we have already established that the grade of membership of B is 0.8. A

rule now fires with antecedent confidence 0.5. The argument is that since we already

know that B’s grade of membership is 0.8, the new information should be discarded,

and the rule would fail; B’s grade of membership would remain at 0.8.

A formula for B0, the new truth value of B0, using monotonic inference is

B0 ¼ P OR B (6:4)

where P is the antecedent truth value. P may have the form (A0 ¼ A), and P will be

the confidence that A0 and A are approximately equal (discussed in Chapter 3).

Suppose A and A0 represent single-valued data (integers, floats, strings), with the

same value but different truth values A and A0, then

P ¼ truth value(A0 ¼ A) ¼ max(A, A0) (6:5)
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If A and A0 are not scalar quantities, that is, discrete fuzzy sets, fuzzy numbers or

membership functions, then we can write (6.5) as

P ¼ tv(A0 ¼ A) ¼ max(A(x), A0(x))8x in A, A0 (6:6)

Similarly, if B and B0 are not scalar quantities, we can write (6.4) as

B0(x) ¼ max(P, B(x)) (6:7)

According to (6.7), if P is multivalued and is non-zero, B would be every non-zero

also. It appears that monotonic reasoning is then not likely to be useful in modifying

a multivalued datum.

6.4.2 Non-monotonic Inference

In non-monotonic inference, we assume that the new information supplied by the

firing of a new rule is more reliable than any existing information.

As before, suppose we have already established that the grade of membership of

B is 0.8. A rule now fires with antecedent confidence 0.5. Since we believe the new

information, we would reduce the truth value of B to 0.5. If, on the other hand, the

new rule fires with confidence 0.9, we would increase the truth value of B to 0.9.

For single-valued data, a formula for B0, using non-monotonic inference is

B0 ¼ P (6:8)

where P is the confidence that A0 and A are approximately equal as given just above.

If B and B0 are not single-valued quantities, non-monotonic reasoning is not

useful unless A, A0, B, and B0 are defined on the same universe. In this case, we

could write (6.8) as

B0 j(x) ¼ A0(x) AND A(x) (6:9)

but this is of doubtful utility in a fuzzy expert system.Another possibility is two use two

levels of fuzziness; that is, we assign P as the truth value of the existing fuzzy number or

membership function B. However, this case is usually covered by monotonic down-

ward reasoning, discussed next. The assignment of truth values to other truth values

has not been explored to any great extent in working fuzzy expert systems, except in

the case of downward monotonic reasoning, discussed next in Section 6.4.3.

6.4.3 Downward Monotonic Inference

Downward monotonic inference may be useful when we believe that the prior truth

value of B represents an upper limit on what is possible. This type of inference is

useful when modifying multivalued data, necessary when defuzzifying. Suppose
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our consequent linguistic variable is B, with members the linguistic terms Bj .

A sample such data declaration and rule might be

declare Data output fzset (Small Medium Large);
rule IF (. . .) THEN output is Small;

where the rule is of the form

if Pi then B is Bj (6:10)

A rule has fired, assigning a grade of membership to Bj. A membership function has

been assigned to Bj, since Bj is a linguistic term. We now wish to modify the mem-

bership function to reflect its grade of membership. To do this, we employ down-

ward monotonic reasoning.

A formula for B0
j, the new truth value of Bj using downward monotonic

inference, is

B0
j ¼ P AND Bj (6:11)

The reader will recall that there are many possible definitions for the AND operator.

If we adopt the Zadehian min AND operator, we can write (6.11) as

B0
j ¼ min(P, Bj) (6:12)

If we adopt the product AND operator, we can write (6.12) as

B0
j ¼ P � Bj (6:13)

Figure 6.1 Downward monotonic inference; modification of a membership function by

firing a rule, prior to defuzzification. Rule is “IF A THEN size is Small”; combined

antecedent and rule confidence (pconf) is 0.6.
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In Figure 6.1, we illustrate the modification of a membership function using down-

ward monotonic inference and the Zadehian min AND operator.

6.5 APPROXIMATE REASONING

We have discussed the theory of approximate reasoning in Section 4.3. As we have

noted, this theory is sometimes suggested for use in fuzzy expert systems. Since the

method has already been presented, we will not repeat the procedure here. We will,

in Section 6.6, attempt to place approximate reasoning for expert systems in the

same general framework as monotonic reasoning (6.4), non-monotonic reasoning

(6.8) and downward monotonic reasoning (6.11).

6.6 TESTS OF PROCEDURES TO OBTAIN THE TRUTH

VALUE OF A CONSEQUENT FROM THE TRUTH

VALUE OF ITS ANTECEDENT

We consider a rule

if X is A then Y is B (6:14)

In this rule X and A are fuzzy sets defined on the same universe, as are Y and B. X is

observed to be A0, a fuzzy set whose truth values may be different from those of

A. We denote the fuzzy set Y that corresponds to A0 by B0. We now desire to calcu-

late the truth values of the fuzzy set B0. Note that since X and A, Y and B are defined

on the same universes, their values are the members of those universes; we are con-

cerned here with the calculation of truth values only.

B0 ¼ P OR B (Monotonic reasoning) (6:15)

B0 ¼ P (Non-monotonic reasoning) (6:16)

B0 ¼ P AND B (Downward monotonic reasoning) (6:17)

if X ¼ A then Y ¼ B: X ¼ A0: [Y ¼ B0,

B0 ¼ A0 � (A ! B) (Approximate reasoning) (6:18)

where � denotes a fuzzy relation, and ! denotes a fuzzy implication operator.

6.6.1 Desirable Properties

Given rule (6.14), if P then (B0 ¼ B), we have now established four methods for

inferring truth values of B0 given truth values for P and B or, in the case of

approximate reasoning, A0, A, and B. We now ask what properties these methods

should have to be useful in expert systems. We think that the following properties

are indispensable for the three different reasoning modes we have defined.
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Monotonic reasoning:

1. B0
j � Bj

2. If A0 ¼ NULL, then B0 ¼ B

3. If A0 and A are disjoint, then B0 ¼ B

(6:19)

Non-monotonic reasoning:

1. B0 ¼ P ¼ (A0 ¼ A)

2. If A0 ¼ NULL, then B0 ¼ NULL

3. If A0 and A are disjoint, then B0 ¼ NULL

(6:20)

Downward monotonic reasoning:

1. B0
j � Bj

2. If A0 ¼ NULL, then B0 ¼ NULL

3. If A0 and A are disjoint, then B0 ¼ NULL

(6:21)

6.6.2 Summary of Candidate Methods

In the following, the symbols for propositions represent their truth values.

A. Fuzzy rule “if A then B”, monotonic reasoning:

B0 ¼ (A0 ¼ A) OR B (6:22)

B. Fuzzy rule “if A then B”, non-monotonic reasoning:

B0 ¼ (A0 ¼ A) (6:23)

C. Fuzzy rule “if A then B”, downward monotonic reasoning (equivalent to

Mamdani method);

B0 ¼ (A0 ¼ A) AND B (6:24)

D. Fuzzy rule “if A0 ¼ A then B0 ¼ B”, Approximate reasoning:

B0 ¼ A0 � (A ! B) (6:25)

In D, approximate reasoning, A ! B produces the fuzzy relation matrix

½Ai ! Bj�; the � operator denotes composition of A0 with A ! B by

B0
j ¼ max(min(A0

i, Ai ! Bj) for all i in A, A0 as defined in Chapter 3.
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6.6.3 Tests of Methods Against Desirable Properties

We now test these four methods on rule (6.14) in the simple case of a fuzzy set with

one member, with grades of membership of A, B, and A0 0 or 1, with results in

Table 6.1A–D. By using crisp values, we leave open the definitions of AND and

OR as any valid t-norm and t-conorm, and of any implication operator that

reduces to the classical for crisp values. (“Desirable properties” are defined in

Section 6.6.1.)

Methods A, B, and C all satisfy the desirable properties for the type of reasoning

they are designed to handle, and fail to satisfy all desirable properties for any other

reasoning type. They are not interchangeable.

TABLE 6.1A Desirable Inference Propertiesa

Desirable Properties

A B A0 A0 ¼ A B0 NonMonotonic Monotonic

Downward

Monotonic

1. 2. 3. 1. 2. 3. 1. 2. 3.

0 0 0 0 0 Y Y Y Y Y Y Y Y Y

0 0 1 0 0 Y — Y Y — Y Y — Y

0 1 0 0 1 N Y Y Y Y Y Y N Y

0 1 1 0 1 N — Y Y — Y Y — Y

1 0 0 0 0 Y Y Y Y Y Y Y Y Y

1 0 1 1 1 Y — — Y — — Y — —

1 1 0 0 1 Y Y N Y Y Y Y N N

1 1 1 1 1 Y — — Y — — Y — —

aMethod A: monotonic rule: B0 ¼ (A0 ¼ A) OR B.

TABLE 6.1B Desirable Inference Propertiesa

Desirable Properties

A B A0 A0 ¼ A B0 NonMonotonic Monotonic

Downward

Monotonic

1. 2. 3. 1. 2. 3. 1. 2. 3.

0 0 0 0 0 Y Y Y Y Y Y Y Y Y

0 0 1 0 0 Y — Y Y — Y Y — Y

0 1 0 0 0 Y Y Y N N N N N N

0 1 1 0 0 Y — Y Y — N Y — N

1 0 0 0 0 Y Y Y Y Y Y Y Y Y

1 0 1 1 1 Y — — Y — — Y — —

1 1 0 0 0 Y Y Y Y N N Y N N

1 1 1 1 1 Y — — Y — — Y N N

aMethod B: non-monotonic rule: B0 ¼ (A0 ¼ A).
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The approximate reasoning method fails to satisfy all desirable properties for any

type of reasoning: monotonic, non-monotonic, or downward monotonic. Of particu-

lar concern is the failure to satisfy property 3. If A0 and A are disjoint so that

(A0 ¼ A) is 0, it is quite possible to produce a B0 that is everywhere 1, a very counter-

intuitive result.

If the t-norm (Mamdani “implication”) A AND B is used instead of the fuzzy

implication in the approximate reasoning method, all properties are satisfied for

downward monotonic reasoning. This is important, since Castro (1995) has demon-

strated that this formulation produces universal approximators for any t-norm used

for the AND operator. However, since the Mamdani “implication” does not reduce

to the classical implication for crisp values, it is not properly speaking an implication

TABLE 6.1C Desirable Inference Propertiesa

Desirable Properties

A B A0 A0 ¼ A B0 NonMonotonic Monotonic

Downward

Monotonic

1. 2. 3. 1. 2. 3. 1. 2. 3.

0 0 0 0 0 Y Y Y Y Y Y Y Y Y

0 0 1 0 0 Y — Y Y — Y Y — Y

0 1 0 0 0 Y Y Y N N N Y Y Y

0 1 1 0 0 Y — Y N — N Y — Y

1 0 0 0 0 Y Y Y Y Y Y Y Y Y

1 0 1 1 0 N — — Y — — Y — —

1 1 0 0 0 Y Y Y N N N Y Y Y

1 1 1 1 1 Y — — Y — — Y — —

aMethod C: downward monotonic rule: B0 ¼ (A0 ¼ A AND B).

TABLE 6.1D Desirable Inference Propertiesa

Desirable Properties

A B A0 A ! B B0 NonMonotonic Monotonic

Downward

Monotonic

1. 2. 3. 1. 2. 3. 1. 2. 3.

0 0 0 1 0 Y Y Y Y Y Y Y Y Y

0 0 1 1 1 N — N Y — N N — N

0 1 0 1 0 Y Y Y N N Y Y Y Y

0 1 1 1 1 N — N Y — Y Y — N

1 0 0 0 0 Y Y Y Y Y Y Y Y Y

1 0 1 0 0 N — — Y — — Y — —

1 1 0 1 0 Y Y Y N N N Y Y Y

1 1 1 1 1 Y — — Y — — Y — —

aMethod D (approximate reasoning): B0 ¼ A0 AND (A IMPL B).
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at all. In the procedure defined for approximate reasoning in (6.25), the fuzzy

relation (A ! B) is replaced by (A AND B), becoming

B0 ¼ A0 � (A AND B) (6:26)

The method of composing A0 with a fuzzy relation between A and B defined by a

t-norm is precisely equivalent to our Method C, downward monotonic inference,

B0 ¼ (A0 ¼ A) AND B:
We have demonstrated that for crisp truth values for A, A0, and B, the non-mono-

tonic rule method satisfies all properties for non-monotonic logic; the monotonic rule

method satisfies all properties for monotonic logic; the downward non-monotonic

rule method satisfies all properties for downward non-monotonic logic; and the

approximate reasoning method fails to satisfy all desirable properties for any reason-

ing type. We will be content with the simple assertion that the rule methods also

satisfy the corresponding properties for fuzzy truth values, and will forego the proof.

Note that in the definitions of methods A, B, and C for determining B0 from A, A0,

and B summarized in 6.6.2, the antecedent involves only A0 and A; the consequent

involves only B0 and B. Only the antecedent in approximate reasoning method D has

a clause that involves both A and B; as we have shown, the approximate reasoning

method fails to meet the desirable properties, and hence has little use in an expert

system. In an expert system, it is then possible to compute the consequent confidence

in two steps, the first of which depends only on the antecedent, and the second of

which couples this to the consequent.

6.6.4 Implementation of Choices Among Types of Reasoning

Inference in a fuzzy expert system differs somewhat from conventional logical infer-

ence. Logical inference seeks to infer new logical propositions from old. A primary

tool for this purpose is the modus ponens “if A implies B, and A is true, then B is

true”, where A and B are logical propositions. Inference in a fuzzy expert system

deals not only with establishing the truths of fuzzy propositions, but with the cre-

ation or modification of data and their truth values by the firing of rules.

In modifying data by a rule, we must consider the combined antecedent and rule

confidences (pconf), and the existing truth value of the data to be modified. We

define three types of inference (Table 6.2):

TABLE 6.2 Data Modification Permissible Under Different

Types of Inference

Type of inference Modification permitted if:

Monotonic Modify if pconf .¼ old data confidence.

Non-monotonic Always modify.

Monotonic downward Modify if pconf ,¼ old data confidence.
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Default reasoning is optimistic; we assume that the existing truth value of a con-

sequent datum is well founded, and any additional information can only validate or

increase existing consequent truth values. This is monotonic reasoning. However, we

occasionally bring in new data in which we have the utmost confidence; in this case,

non-monotonic reasoning can be employed. The last circumstance occurs when we

are quite pessimistic, and any new data can only reduce existing confidences; we

then employ monotonic downward reasoning. The last method is sometimes appro-

priate when modifying membership functions prior to defuzzification.

Obviously, if different types of reasoning need to be employed under different

circumstances, the writer of a fuzzy expert system must provide mechanisms for

making this choice. We have seen that the method of approximate reasoning is inap-

plicable to rule-based fuzzy expert systems. We shall see later that downward mono-

tonic reasoning is employed when modifying membership functions prior to

defuzzification; FLOPS employs this type of reasoning by default with the

defuzzify command. However, in normal fuzzy reasoning, the knowledge

engineer should be given a way of choosing between monotonic upward and

non-monotonic reasoning.

FLOPS employs monotonic upward reasoning by default. The default reasoning

may be changed to non-monotonic by issuing the TMSoff command, and may

restore monotonic upward reasoning by the TMSon command. In addition, when

confidence levels are modified inferentially by such consequent commands as

area is Small, or x is 33, the default reasoning method is used; when

confidence levels are referred to directly, by such consequent commands as

area.Small = 0 or x.cf = 0, non-monotonic reasoning is used. It is also

possible to use an arbitrary inference method by computing truth values in any

desired way; this ability is utilized in a FLOPS program using the Combs’

inference method, described in Chapter 7.

6.7 SUMMARY

Inference in an expert system is the process of drawing conclusions from data; that is

deriving new data or truth values from input data and truth values. The new data may

be the final conclusions, or in multistep reasoning, may be intermediate conclusions

that constitute input to the next step.

Inference in a fuzzy expert system differs somewhat from conventional logical

inference. Logical inference seeks to infer new logical propositions from old. A

primary tool for this purpose is the modus ponens “if A implies B, and A is

true, then B is true”, where A and B are logical propositions. Inference in a

fuzzy expert system deals not with establishing the truths of fuzzy propositions,

but with the creation or modification of data and their truth values by the firing

of rules.

In modifying data by a rule, we must consider the combined antecedent and rule

confidences (pconf), and the existing truth value of the data to be modified. We

define three types of inference:
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Type of inference Modification permitted if:

Monotonic Modify if pconf.¼old data confidence.

Non-monotonic Always modify.

Monotonic downward Modify if pconf ,¼old data confidence.

Default reasoning is optimistic; we assume that the existing truth value of a con-

sequent datum is well founded, and any additional information can only validate

or increase existing consequent truth values. This is monotonic reasoning.

However, we occasionally bring in new data in which we have the utmost confi-

dence; in this case, non-monotonic reasoning can be employed. The last circum-

stance occurs when we are quite pessimistic, and any new data can only reduce

existing confidences; we then employ monotonic downward reasoning. The last

method is usually appropriate when modifying membership functions prior to

defuzzification.

6.7.1 Data Types and Truth Values

Available attribute data types and their truth values may be summarized as:

. Integers, floats and strings. Values are assigned either by user input or as lit-

erals within the program. A single truth value is attached to any value these

attributes may have. This truth value is itself an attribute, accessed by

appending .cf to the attribute name. This truth value itself is assumed to

be fully true.

. Fuzzy numbers. Values are any number from the real line. Truth values are

defined by a parameterized membership function that maps any real number

value onto its truth value (grade of membership). Fuzzy numbers are used pri-

marily in approximate comparisons in a rule antecedent. A full range of

approximate comparison operators is available corresponding to the conven-

tional Boolean numerical comparison operators furnished by most computer

languages. The truth value of a fuzzy number attribute itself is assumed to be

fully true.

. Discrete fuzzy sets. Values are defined as the names of the members of the

fuzzy set. To each member a single truth value is attached, the grade of mem-

bership of that member in the fuzzy set.

. Membership functions. Values are numbers from the real line. If a discrete

fuzzy set is a linguistic variable, whose members are linguistic terms describing

a numeric quantity, membership functions are attached, one to each linguistic

term. These functions, like fuzzy numbers, map any real or fuzzy number

onto the truth value (grade of membership) of the corresponding linguistic

term (discrete fuzzy set member). The grade of membership of the linguistic

term applies also to its membership function.
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6.7.2 Types of Fuzzy Reasoning

Three types of fuzzy inference are defined. These types differ in consequent truth

value modifications permissible as a result of firing a rule. In monotonic reasoning,

consequent truth values may increase or stay the same, but may not decrease; in

non-monotonic reasoning, consequent truth values may increase, decrease, or stay

the same; in monotonic downward reasoning, consequent truth values may decrease

or stay the same, but may not increase.

We consider a rule that modifies data or truth values as

if P then B0 ¼ B (6:27)

in which P is the antecedent, B is an existing truth value, and B0 is the new truth

value modified by the firing of the rule. P may have the form

P ¼ (A0 ¼ A) (6:28)

where A is a specified value, and A0 is an observed value. This form is required by

the generalized modus ponens used in approximate reasoning.

In data modification by a rule, we consider three types of inference and define

these types quantitatively, in terms of the antecedent confidence and the truth

value of data to be modified. We also similarly define the Approximate Reasoning

method.

. Monotonic reasoning: B00000 ===== P OR B
Monotonic reasoning is useful when modifying values of scalar data, or

grades of membership of discrete fuzzy sets by such consequent instructions

as THEN name = "Jane" or THEN size is Small.

. Non-monotonic reasoning: B00000 ===== P

Non-monotonic reasoning is useful when modifying truth values directly,

especially when invalidating data previously believed to be true.

. Monotonic downward: B00000 ===== P AND B

For membership functions, where x is a scalar argument,

B’(x) = P AND B(x)

This type of reasoning is useful when combining the grade of membership of a

linguistic term with its membership function prior to defuzzification.
. Approximate reasoning:

B’ = A’ o [A IMPLIES B]

in which o denotes fuzzy composition and IMPLIES denotes any fuzzy impli-

cation operator that reduces to the classical for crisp operands.

We define desirable properties for inference in an expert system for these

inference types.We then show that the definitions ofmonotonic, non-monotonic,
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and monotonic downward reasoning all satisfy the desirable properties for their

reasoning types, but the approximate reasoning method fails to satisfy all desir-

able properties for any type of reasoning. We note that Mamdani inference,

which uses a fuzzy AND operator in place of an implication operator,

is precisely the same as our monotonic downward method.

6.8 QUESTIONS

6.1 What is the difference between possibility and necessity?

6.2 We have proposition A, but as yet no evidence to support it or refute it. What is

Nec(A)? Pos(A)?

6.3 We have created a fuzzy set to hold some preliminary classifications of an

object.

a. To what value should the grades of membership of the fuzzy set members

be initialized?

b. If we are going to employ monotonic reasoning, what advantage does this

initialization have?

6.4 What are the differences among monotonic, non-monotonic and downward

monotonic reasoning?

6.5 We are employing monotonic reasoning, and have a fireable rule with a con-

sequent instruction that would decrease the truth value of a datum. What

happens to that truth value when the rule is fired?

6.6 Under what circumstance should we employ non-monotonic reasoning?

6.7 When should downward monotonic reasoning be employed?

6.8 What type of inference does FLOPS employ by default?

6.9 a. Can FLOPS default inference method be changed?

b. If so, how, and to what method?
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7 Inference in a Fuzzy Expert
System II: Modification of
Data and Truth Values

In Chapter 6, we defined three types of fuzzy inference useful in expert systems.

These are monotonic (upward), in which consequent truth values can increase or

stay the same but cannot decrease; non-monotonic, in which truth values may

increase, decrease or stay the same; and monotonic downward, in which truth

values may decrease or stay the same, but cannot increase. Monotonic inference is

useful when modifying values of scalar data (integers, floats and string) by such con-

sequent instructions asx ¼ 13, wherex is an integer, and in inferring grades ofmem-

bership in discrete fuzzy sets by such instructions assize is Small, wheresize
is a discrete fuzzy set of which Small is a member. Non-monotonic inference is

required when invalidating data previously believed to be true, by directly assigning

truth values or grades of membership with such instructions as x.cf ¼ 0, which sets
the truth value of x to 0, and size.Large ¼ 0, which sets the truth value of

member Large of discrete fuzzy set size to 0. Monotonic downward inference

is useful when modifying membership functions prior to defuzzification.

In this chapter, we will examine how these methods are used in modifying exist-

ing data and truth value when firing rules. We will not be concerned with evaluating

the truth value of the rule antecedent; we will assume that this has been determined

and combined with the truth value of the rule itself using the methods of Chapters 3

and 4. We will refer to this combined truth value as the antecedent confidence to

simplify our wording. When the antecedent has been found to be sufficiently true,

we are ready to execute the consequent of the rule.

There are many possible consequent instructions, including creation, modifi-

cation and input or output of data, direction of the flow of the program by metarules,

debugging instructions, and so on. Here, we will be concerned only with instructions

that change or create values or truth values of data; the other instruction types are

ancillary to the main purpose of the program, which is to reason from data to

conclusions.

Creating new data in the consequent of a rule offers no problems. Scalar data

(integer, floats, and strings) and fuzzy numbers are set to the new value with

(by default) the truth value set to the antecedence confidence. Fuzzy numbers are
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set to the specified membership function; since entire fuzzy numbers themselves do

not have a truth value, the antecedent confidence is ignored. Grades of membership

of discrete fuzzy sets are initialized to 0. Membership functions of linguistic terms

are set to the specified values. Default truth values for new scalar data and grades of

membership of discrete fuzzy set members may be overridden by direct assignment

of these values.

We now consider the major problem: modification of existing data and truth

values.

7.1 MODIFICATION OF EXISTING DATA BY RULE

CONSEQUENT INSTRUCTIONS

Conventionally, a simple rule of the type

IF (A0 ¼ A) then (B0 ¼ B) (7:1)

where A, A0, B, and B0 are fuzzy numbers, and B0 is evaluated setting up a fuzzy

relation [Ai AND Bj] and evaluating B0 by composing A0 with this relation,

usually using max–min composition:

B0 ¼ A0 � ½Ai AND Bj� (7:2)

where the AND operator is a selected t-norm. [In the Mamdani method, the

Zadehian t-norm min(Ai , Bj) is used.]

There are two problems with this approach. First, the method is difficult to apply

to complex antecedents. Second, the method involves two nested loops, first over

rows, then over columns of the fuzzy relation. Both these problems are easily

solved, since (7.2) is precisely equivalent to formulation (7.4), which does not

require two nested loops. [See Klir and Yuan (1995), p. 316.]

Let p be the antecedent truth value. Then in rule (7.1),

p ¼ max(min(A0(x), A(x))) over x (7:3)

Then,

B0 ¼ pB ¼ {min( p, B0
j} (7:4)

We can then evaluate our rule (7.1) quite simply, using (7.4):

IF (A0 ¼ A) THEN (B0 ¼ pB) (7:5)

in which P is the antecedent truth value, B is the specified prior truth value of B, and

B0 is the new value of B resulting from firing the rule. If B is a fuzzy set, then B0 must

be defined on the same universe as B.
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7.2 MODIFICATION OF NUMERIC DISCRETE FUZZY SETS:

LINGUISTIC VARIABLES AND LINGUISTIC TERMS

Recall that a linguistic variable is a special kind of discrete fuzzy set, such as Speed,

that describes a numeric quantity. The members of this discrete fuzzy set are linguis-

tic terms such as Fast, Medium, and Slow. To each linguistic term a membership

function is attached that maps numbers from the real line onto grades of membership

of the linguistic terms.

In this section, we consider rules with linguistic terms in both antecedent and con-

sequent. This is almost always the case in fuzzy control, and sometimes in more

general fuzzy reasoning problems as well.

Consider a special case of rule (7.1) above:

if (speed is Slow AND distance is Far) then (power is High) (7:6)

where speed, distance, and power are numeric attributes.

This type of rule is found in most fuzzy control programs. There are two different

ways of defining the syntax of this rule. In typical fuzzy control rule syntax, Slow,

Far, and High are membership functions in (unspecified) linguistic variables; speed,

distance, and power are floating-point numeric variables. Such rules are almost

invariably coupled with many other similar rules.

Firing this rule involves a complex procedure. First, the numeric attributes speed

and distance are fuzzified to get the truth value of the antecedent clauses (speed is

Slow) and (power is High); these are combined to get the antecedent confidence.

The membership function for High is then modified using downward monotonic

reasoning. Next, the membership functions relating to power, including High and,

for example, Medium, Low, and Zero, are combined, that is, aggregated, using an

OR operator. Finally, the combined membership functions are defuzzified using,

for example, the centroid method to yield a numeric value for power. This yields

an extremely compact rule structure.

There are, however, disadvantages to lumping this entire procedure into one rule,

stemming in part from the fact that while linguistic terms are employed, the linguis-

tic variable of which they are members is unspecified. This means that the term

Medium, for example, should not be used except in association with speed, since

only one membership function can be associated with Medium. Since names of

the linguistic variables associated with speed, distance, and power are not specified,

they are inaccessible to the programmer if he wishes to use the grades of member-

ship of their members (such as High) in later rules; multistep reasoning becomes

more difficult. Fuzzification and defuzzification are automatic and inescapable; it

is impossible to use a discrete fuzzy set of classification in the consequent. For

these reasons, we prefer to avoid this rule of syntax in general-purpose fuzzy reason-

ing, and to break out fuzzification and defuzzification (if any) as separate steps in

two other rules. For example,

declare Data
fspeed flt
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speed fzset (Slow Medium Fast)
fdistance flt
distance fzset (Short Medium Far)
fpower flt
power fzset (Zero Low Medium High);

rule block 1
IF (in Data fspeed = <SP> AND fdistance = <D>)
THEN fuzzify 1 <SP> into speed,

fuzzify 1 <D> into distance;

After this rule has fired, the discrete fuzzy sets (linguistic variables) speed and

distance will have grades of membership assigned to their respective members.

Although the term Medium is used three times, each one belongs to a different

linguistic variable, and will have its own membership function.

We are now ready to fire our next set of rules, of the type

rule block 2
IF (speed is Slow AND distance is Far) THEN (power is High);

rule block 2
IF (speed is Fast AND distance is Short) THEN (power is
Zero);

When the rules in block 2 have fired (in parallel), the members of linguistic variable

power will have been assigned their grades of membership, and we are ready to

defuzzify if we wish;

rule block 3
IF(Data)
THEN defuzzify 1 power (centroid) into 1 fpower;

The grades of membership of the members of linguistic variables speed, dis-

tance, and power are accessible to the programmer after the block 2 rules have

fired.

We now ask what type of reasoning is appropriate in this problem.

7.3 SELECTION OF REASONING TYPE AND

GRADE-OF-MEMBERSHIP INITIALIZATION

A critical element in deciding reasoning type is to decide what we want to do if two

or more rules have the same consequent discrete fuzzy set member or linguistic

term, firing with different antecedent confidences.
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Suppose we have two rules with the same consequent:

:rule r1
IF (speed is Slow AND distance is Medium) THEN (power is
Medium);
:rule r2
IF (speed is Medium AND distance is Short) THEN (power is
Medium);

and that rule r1 fires with antecedent confidence 0.8, and that rule r2 fires with ante-

cedent confidence 0.6. With monotonic reasoning, rule r1 would succeed in setting

the grade of membership of Medium to 0.8, even if rule r2 fires after rule r1. If we

allow each rule to set truth values regardless of their existing value, the last rule to

fire would succeed.

There are, however, occasions when we wish to modify grades of membership in

different ways, employing non-monotonic reasoning; these will be discussed in

Section 7.7.

7.4 FUZZIFICATION AND DEFUZZIFICATION

We review briefly fuzzification and defuzzification, discussed more fully in

Chapter 3, from the point of view of the choices to be made and their specification

in an expert system language.

Overall, we have these steps to carry out; fuzzification and evaluation of antece-

dent confidence; modification of consequent membership functions; aggregation of

membership functions for each consequent linguistic variable; and defuzzification of

the aggregated membership functions.

7.4.1 Fuzzification and Evaluation of Antecedent Confidence

Fortunately, almost everyone agrees on how fuzzification should be carried out; in a

working expert system. Also, combination of truth values of two or more antecedent

clauses is almost always carried out using the Zadehian min–max AND and OR

operations. It is probably satisfactory to take the conventional methods as defaults,

and not necessary to permit specifying any other choices here.

7.4.2 Modification of Consequent Membership Functions

The modification of membership functions can carried out by

B0
j ¼ P AND Bj (7:7)

but there is not general agreement as to which AND operator should be used.

Common choices are the Zadehian min operator (which yields the Mamdani
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method) and the product operator. The min operator is widely accepted, and is prob-

ably a good default, but it lends flexibility to a system if other operators can be

specified.

7.4.3 Aggregation of Consequent Membership Functions for Each
Consequent Linguistic Variable

Aggregation of all the modified membership functions belonging to a single linguis-

tic variable is usually carried out using the Zadehian max OR operator, and this is

probably acceptable as a default at present. However, an argument can be made

for employing a different OR operator. Let us take an example and follow it through.

Suppose we have a linguistic variable control in the consequent of a rule, with

three members N, Z, and P with these membership functions (Fig. 7.1):

We fire rules that give grades of membership 0 for N, 0.8 for Z and 0.6 for P, and

modify the membership functions using the Zadeh AND operator, giving these

modified membership functions (Fig. 7.2):

We now aggregate these modified functions using the Zadehian OR operator

(Fig. 7.3):

The aggregated membership functions in Figure 7.3 represent a new membership

function. We may ask—Membership in what? The answer is that Figure 7.3 rep-

resents the truth value that a number between 21 and þ1 is valid for this particular

instance of the linguistic variable control. But the resulting membership function is

Figure 7.1 Membership functions for linguistic variable control.

Figure 7.2 Modified membership functions for linguistic variable control.
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not convex, and the notch in Figure 7.3 at an argument 0.5 seems quite counterin-

tuitive. Why should 0.5 have a lower grade of membership in control than arguments

of 0 and 1?

In Chapter 3 we showed that when ORing fuzzy numbers are logically incompa-

tible, such as 2 and NOT 2, there is a mathematical (and practical) argument for

using the bounded sum OR operator. In aggregating membership functions, we

deal with fuzzy numbers that are semantically incompatible.

Unfortunately, we do not have a mathematical argument to justify using the

bounded sum operator in this, but from a practical viewpoint it seems to work

out, at least in this case. In Figure 7.4, we aggregate the membership functions of

Figure 7.2 using the bounded sum operator with intuitively pleasing results; the

resulting membership function is convex and the annoying notch in Figure 7.3

has been removed.

Figures 7.3 and 7.4 indicate that it might be desirable to furnish a choice of other

OR operators than the Zadehian for aggregation of membership functions, provided

that the memberships of the unweighted aggregated membership functions satisfy

appropriate conditions, such as their sum being one at any point. More research is

needed on this point.

7.4.4 Determination of Defuzzified Value for Consequent Attribute

We denote the argument of the membership functions, the number whose defuzzi-

fied value is to be obtained by z; its grade of membership by m(z); and the defuzzi-

fied value by zdef .

Figure 7.3 Aggregated membership functions using Zadehian OR operator for linguistic

variable control.

Figure 7.4 Aggregated membership functions for linguistic variable control. using the

bounded sum OR operator.
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Here again different methods are used, described in Klir and Yuan (1996) (books

on.fuzzy control). Here, we will describe only the most commonly used defuzzifica-

tion method, the centroid method.

Probably the most commonly used defuzzification method is the centroid

method, equivalent to calculating the center of area of the aggregated membership

function, as shown in Figure 7.3 or 7.4. Analytically, we divide the integral over

the range of the membership function of the product of the argument and its

grade of membership, and divide this by the integral of the grade of membership;

this is very useful when the membership functions are given as parameterized

continuous functions, such as piecewise linear, piecewise quadratic or normalized

Gaussian:

zdefuzzified ¼

Ð
Z
zm(z)dzÐ

Z
m(z)dz

(7:8)

The discrete version of this, when the membership functions are given as a

discrete set of values, is to sum the products of the arguments and their grade of

membership, and divide this by the sum of the grades of membership:

zdefuzzified ¼ zdefuzzified ¼

P
i zim(zi)P
i m(zi)

(7:9)

In the case where the membership functions are singletons, equation (7.9) becomes

a very fast and simple calculation.

7.5 NON-NUMERIC DISCRETE FUZZY SETS

In “What?” problems, the output will usually be non-numeric: A classification such

as a disease in problems of diagnosis, a specific trouble as in problems of trouble

shooting, identification of an unknown object, or recommendation of a course of

action. There are two convenient ways to represent such an output internally: as a

discrete fuzzy set of possibilities, or as a character string to be presented to the

user. Representation as a discrete fuzzy set has advantages. Fuzzy sets lend them-

selves well to representation of ambiguities and contradictions, and numeric

measures are available for the degrees of fuzziness and ambiguity in a discrete

fuzzy set, helping to evaluate how certain we are that a conclusion we have

reached is unique and supported by the evidence.

There are rules whose syntax seems at first to be virtually the same as the

typical fuzzy control rule (7.6), but used for classification, and which do not

involve defuzzification at all. In such rules, the consequent discrete fuzzy set

is a fuzzy set of classifications, perhaps preliminary classifications. For example,

here is a sample from a simplified program for classification of the famous

Iris data of Fisher (1936).
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declare Data
N int PL flt PW flt SL flt SW flt;

declare Iris
N int
PetalL fzset (setosa versicolor virginica)
PetalW fzset (setosa versicolor virginica)
SepalL fzset (setosa versicolor virginica)
SepalW fzset (setosa versicolor virginica)
species fzset (setosa versicolor virginica);

In this case PL, PW, SL, and SW are the measured length and width of petal and

sepal, and PetalL, PetalW, SepaL, and SepalW, are linguistic variables with three

members, one for each of the possible species classifications. Of course, member-

ship functions must be defined; the linguistic term setosa will identify one member-

ship function for petal length, one for petal width, one for sepal length and one for

sepal width. Species is a discrete fuzzy set of classification; it is non-numeric, and

has no membership functions attached.

Our first classification rule fuzzifies the data, just as in fuzzy control:

rule block 0 (goal Fuzzify input data)
IF (in Data N = <N> AND PL = <PL> AND PW = <PW> AND SL =
<SL> AND SW =

<SW>)
(in Iris N = <N>)

THEN
fuzzify 2 PetalL <PL>,
fuzzify 2 PetalW <PW>,
fuzzify 2 SepalL <SL>,
fuzzify 2 SepalW <SW>;

Now, we are ready to classify with three rules, one for each candidate species:

rule block 1 (goal classify as setosa)
IF (in Iris PetalL is setosa AND PetalW is setosa AND
SepalL is setosa AND SepalW is setosa)
THEN

in 1 species is setosa;
rule block 1 (goal classify as virginica)
IF (in Iris PetalL is virginica AND PetalW is virginica
AND SepalL is virginica AND SepalW is virginica)
THEN

in 1 species is virginica;
rule block 1 (goal classify as versicolor)
IF (in Iris PetalL is versicolor AND PetalW is versicolor
AND SepalL is versicolor AND SepalW is versicolor)
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THEN
in 1 species is versicolor;

When these rules have fired, discrete fuzzy set species will hold the grades of

membership assigned to each species. Since the classifications are non-numeric,

no defuzzification is required, or even possible.

7.6 DISCRETE FUZZY SETS: FUZZINESS, AMBIGUITY, AND

CONTRADICTION

When we desire to output results as a discrete fuzzy set of possibilities, it is most

often the case that more than one fuzzy set member will have an appreciably non-

zero grade of membership. For example, in the iris classification problem described

above, our output fuzzy set might be

Fuzzy Set Species Grade of Membership

Setosa 0:024
Versicolor 0:895
Virginica 0:910

(7:10)

Or, if we want to describe the speed of a car:

Fuzzy Set Speed Grade of Membership

Slow 0:024
Medium 0:895
Fast 0:910

(7:11)

In (7.10), the classifications are mutually exclusive; the specimen must be one
species only. A plant cannot belong to two species at the same time. We have, there-
fore, a contradiction between Versicolor and Virginica, which we will have to
resolve one way or another.

In (7.11), however, it is quite possible for a car to share the characteristics of speed

Medium and speed Fast. On an expressway a car traveling just below the speed limit

of 65 mph might be considered to be going Fast, but a state trooper would probably

consider that speed to beMedium.We have here not a contradiction, but an ambiguity.

7.6.1 Fuzziness and Ambiguity

Wemight want to know quantitatively to what extent the members of the fuzzy set fail

to have crisp memberships, either 0 or 1. We now measure fuzziness, the extent to

which a fuzzy set is not crisp. First, we present a very simple measure of fuzziness:

fuzziness1 ¼
X
i

(1� abs(2mi � 1)) (7:12)
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The fuzziness measure returns the effective number of fuzzy set members that have

complete fuzziness, that is, grade of membership 0.5. For example, the fuzziness of

{0:5, 0:5, 0:5} is 3; the fuzziness of {0, 0:5, 1} is 1 and the fuzziness of

{0:75, 0:75, 0:25} is 1.5. For the two fuzzy sets just above, the fuzziness is 0.436.

A sounder fuzziness measure that is based on information theory requires normaliza-

tion of grades of membership to a sum of 1:

m0
i ¼

miP
i mi

fuzziness ¼ exp �
X
i

(mi logmi � (1� mi)� log(1� mi))

 ! (7:13)

Note that fuzziness does not measure how decisively the grades of membership in a

fuzzy set point to one and only one member; instead, it measures how sure we are

of the various degrees of membership. For measures of our ability to distinguish

one valid member from others, we have to consider ambiguity.

7.6.2 Ambiguities and Contradictions

We now consider the extent to which more than one member of the output fuzzy set

has a non-zero grade of membership; in other words, the effective number of

members to which the memberships point. Of course, an ambiguity of one is

great; only one member can be considered to be valid.

Ambiguity can be measured in a similar fashion to fuzziness. We present a simple

measure of ambiguity corresponding to the measure of fuzziness in (7.12). For this

simple measure of ambiguity, the first step is to determine the maximum grade of

membership max(m). We then normalize the original grades of membership to a

maximum of one:

m0
i ¼

mi

max(mi)
(7:14)

The total ambiguity is then simply the sum of the normalized grades of membership:

ambiguity ¼
X
i

mi

max(mi)

ambiguity ¼
X

(m0
i)

(7:15)

Examples of measured fuzziness and ambiguity are given in Figure 7.1. The

ambiguity measure returns the effective number of fuzzy set members that cannot

be distinguished from each other as the best choice. For example, the ambiguity

of {1, 1, 0) is 2; the ambiguity of {0:5, 0:5, 0) is 2; and the ambiguity of

{0:9, 0:1, 0:1) is 1.22. For the two fuzzy sets (7.1, 7.2) the ambiguity is 0.436.
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Let us look again at the two fuzzy sets in Section 7.6:

Fuzzy Set Species Grade of Membership

Setosa 0.024

Versicolor 0.895

Virginica 0.910

Fuzzy Set Speed Grade of Membership

Slow 0.024

Medium 0.895

Fast 0.910

While there is no difference in the mathematics of these two identical sets, their

interpretation and how we handle them is quite different. Note that for a single

sample, valid memberships in the members of fuzzy set species are mutually exclu-

sive; only one correct membership can be assigned to a single sample. If (say) we

have similar high grades of membership in Versicolor and Virginica, we have a

contradiction: They cannot both be true. However, for a single sample, the member-

ships in fuzzy set speed are not mutually exclusive. It is quite likely that a single

speed measurement would not correspond exactly to our concepts of speed as

Slow, Medium, or Fast, and might be (e.g.) half-way between what we think of as

Slow and what we think of as Medium. In that case, since more or less equally

high grades of membership in Slow and Medium would be quite acceptable, we

now have an ambiguity rather than a contradiction.

7.6.3 Handling Ambiguities and Contradictions

Retaining Ambiguities. The action we take with regard to ambiguities and contradic-

tions is quite different. In general, there are several reasons to retain ambiguities and

not try to reduce them to a single valid member. Suppose that in fuzzy set speed, we

had membership of Slow 0.56, Medium 0.52, and Fast 0, and that we had decided to

resolve the multiple grades of memberships by retaining only the largest. We would

now have Slow 0.56, Medium 0, and Fast 0. Now we transmit an inaccurate picture

to later reasoning stages or to the user; if we were then to defuzzify speed, we

would get again quite an inaccurate value. Later rules that should fire if (say)

Medium were at least 0.10 would now fail to fire, perhaps leading us to a catastro-

phically wrong final result, such as failing to brake sufficiently hard and smashing

into the car ahead of us. Similarly, with classification problems. It is not at all

unusual to have more than one preliminary classification with respectable truth

TABLE 7.1 Examples of Fuzziness and Ambiguity

Fuzzy set grades of membership: f0, 1g: fuzziness 0; ambiguity 1

Fuzzy set grades of membership: f0.5, 0.5g: fuzziness 2; ambiguity 2

Fuzzy set grades of membership: f0.25, 0.75g: fuzziness 1; ambiguity 1.333
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values for the same object; and it infrequently happens that the preliminary classi-

fication with the highest truth value turns out to be incorrect. So, we need have no

fear of ambiguities; they often lend robustness to a line of reasoning.

Resolving Contradictions. Contradictions, however, should be resolved if possible

when they arise. Of course, the simplest method is to take the highest grade of mem-

bership as the only valid one, and if two grades of membership are identical, poss-

ibly to spin a random number to decide. This can clearly lead us to results that are at

least suspicious if not downright wrong. It is better first to detect whether the grades

of membership are appreciably contradictory; the measure of ambiguity given in

(7.14) and (7.15) above is one suitable way to do this. If we find that contradictions

can occur (which is usually the case), we have a choice of several ways in which to

proceed. In any case, we must recognize that the rules we have written so far have

not produced final results, but have produced preliminary results.

We should always review the rules and membership functions we have used so

far to see if we can produce better preliminary results. It is conceivable, but unlikely,

that this step will solve our problem.

The next step is to see if we can use or acquire additional data to distinguish

among the contradictions. For example, an image analysis program for ultrasound

images of the heart to detect the various heart regions such as left atrium and

right ventricle initially classifies the regions based on region area and position in

the image. While this detects a lot of regions correctly, it is virtually guaranteed

to produce contradictions, since the rules to detect a ventricle and merged atrium

and ventricle (mitral valve open) are identical!

The succeeding steps resolve contradictions. For example, suppose a rule has

classified a region as both left ventricle (LV) and merged left ventricle and left

atrium (LAþ LV). We now look to see if in the same frame a region has been classi-

fied as left atrium (LA). If this is true, clearly the classification as LAþ LV is wrong,

and the classification as LV is correct. If, however, no region has been classified as

LA, the classification as LV is wrong and LAþ LV is correct.

It is true that the rules for determining preliminary results might possibly be

written so as to simultaneously rule out contradictions, but this would make the

rules more difficult to write, to debug, and to maintain, and is not advisable.

If our efforts to resolve a contradiction fail, we should report this to the user (or later

stages of the program) so that the data are available for determining a course of action.

7.7 INVALIDATION OF DATA: NON-MONOTONIC REASONING

Let us suppose that after obtaining preliminary classifications, we find that an

unacceptable degree of ambiguity exists among classifications that are mutually

exclusive. (It is not always the case that classifications are mutually exclusive.

For example, two or more diseases may be concurrently present in a patient.)

Since the classifications are mutually exclusive, ambiguity in the fuzzy set of classi-

fications represents a contradiction that we must now resolve.
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It is fairly common, in this case, to accept the classification that has the highest

grade of membership. This is easily done, but somewhat dangerous. We have on

a number of occasions found that the classification with the highest degree of

membership was, in fact, not the correct one. Resolving contradictions requires

non-monotonic reasoning; we wish to invalidate something previously believed to

be true, and write rules for this purpose. The antecedent of such a rule represents

our criteria for rejecting the preliminary classification. But our default reasoning

is monotonic, and we must now implement non-monotonic reasoning. This is

accomplished by setting values for truth values directly. Truth values of data, inclu-

ding grades of membership in fuzzy sets, are attributes themselves, and can have

values set to whatever we desire by the consequent of a rule. Suppose we have

declared a discrete fuzzy set of classifications:

declare Data
class fzset (class1 class2 class3);

and have written classification rules

rule r1 IF (antecedent A) THEN class is class1;
rule r2 IF (antecedent B) THEN class is class2;
rule r3 IF (antecedent C) THEN class is class3;
rule r4 IF (antecedent D) THEN class is class1;

The confidence in antecedent A is 0.6, in antecedent B is 0.8, in antecedent C is 0,

and in antecedent D is 0.9. Rule r1 fires, setting the grade of membership of class1 to

0.7. Rule r2 fires, setting the grade of membership of class2 to 0.8. Rule r3 fails to

fire, leaving the grade of membership of class3 at its initialized value of 0. Finally,

rule r4 fires, resetting the grade of membership of class1 to 0.8 since our default

reasoning is monotonic.

In the next block of rules, we have written a rule specifically to detect and correct

contradictions. This rule is

IF (in Data class is class1 AND class is class2 AND
correction clauses here)THEN in 1 class.class1 = 0;

The last rule sets the membership of class1 to 0. When modifying truth values and

grades of membership directly as attributes, reasoning is non-monotonic. This is a

very important point. When modifying data values or grades of membership in

fuzzy sets by such consequent clauses as

in 1 x is 4;in 2 class is class1;

reasoning and management of truth values is monotonic. But if truth values are

modified directly, as in

in 1 x.cf is 0;in 2 class.cf is .5;
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reasoning is non-monotonic and the specified value for truth value or grade of mem-

bership will be stored regardless of its prior value.

7.8 MODIFICATION OF VALUES OF DATA

Modification of data values is a fairly simple matter. The default reasoning is mono-

tonic; replacement of a data value by a new value is not permitted if the truth value

of the new value is less than that in the existing value.

Replacement of data if the truth value of the new value is greater than that of the

existing value is easily justified. [wec1]Replacement of an old value by a new value if

truth values are equal [wec2]is justified on two scores. First, the new value is more

recent than the old. Second, if replacement of equal truth value is not allowed, it

becomes very difficult to write a working program at all; replacement on equal

values because of recency is extremely common, and accomplishing it[wec3] when

necessary would require considerable extra code. We would have to reset the old

truth value directly by the non-monotonic reasoning permitted when truth values

are directly manipulated, then carry out the replacement in a second rule, fired

after the truth value had been reset.

There is a command available to reset the antecedent confidence to any desired

value; in the consequent of a rule, the command

reset;

sets the antecedent confidence to full. If it is desired to set the antecedent confidence

to another value, say kNl, this can also be accomplished by the reset command;

reset <N>;

By using the reset command, data values may be replaced even if the antecedent

confidence is less than the existing truth value of the old value.

7.9 MODELING THE ENTIRE RULE SPACE

Up to this point, we have been concerned with modeling a single rule of the general

type

if p then q (7:16)

where p is an antecedent, usually complex, and q is a consequent that modifies an

attribute of type integer, float, string, fuzzy number, or member of a discrete

fuzzy set. The consequent has not been a complete discrete fuzzy set; we have

implicitly assumed that when we are trying to establish a new complete discrete
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fuzzy set, that we have a number of rules of the general type

if pi then q0j ¼ qj (7:17)

where pi is a member of the set of antecedents P, qj is a member of the consequent

discrete fuzzy set Q with grades of membership defined prior to firing the rule set,

and qj
0 is a member of the consequent discrete fuzzy set Q0 with grades of member-

ship defined after firing the rule set. A rule confidence ri is associated with each such

rule; if omitted from the rule, ri is assumed to be 1.

It may bemore efficient to look at awhole collection of rules of type (7.17) rather than

to look at single rules when solving a problem. We now deal with modeling the entire

space of such rules.We assume that we have N input variables represented by N discrete

fuzzy sets, each with M members, and one output variable, represented by a discrete

fuzzy set with Q members. We will also assume that there is a confidence associated

with each rule. Each rule may be uniquely identified by the antecedent and consequent

subscripts. The rule confidences are the elements ri, j of the rule confidencematrix R. The

R matrix is of great importance; it relates inputs to output for a particular problem.

There are several steps involved in evaluation of a rule set. (Note that fuzzifica-

tion and defuzzification are broken out as separate steps.) Step 1: Any fuzzification

necessary takes place so that numeric attributes are mapped onto the grades of mem-

bership of discrete fuzzy sets. Step 2: The truth values of the antecedents are deter-

mined. Step 3: The antecedent truth values are combined with rule confidences to

yield antecedent confidences, now representing the consequent confidence with

which consequent may be executed, the consequent confidences. Step 4: The conse-

quent confidences are combined with existing truth values of consequent discrete

fuzzy set members to yield their new grades of membership. If defuzzification is

to take place, in Step 5 the grades of membership of consequent fuzzy set

members are combined with their membership functions to yield modified member-

ship functions. Step 6: The modified membership functions of the consequent

discrete fuzzy set, a linguistic variable, are combined to yield a membership function

for the entire consequent linguistic variable. Step 7: A single numeric floating-point

variable is derived from the combined membership functions.

In this section, we assume that Step 1, fuzzification, has already taken place.

Methods of Step 2, determining truth values of the antecedents, has been covered

in Chapters 3–5. Steps 5–7 have already been covered in Sections 7.2, 7.3, and

7.8. In this section we will be concerned with Steps 3 and 4; determination of

new grades of membership qj
0 of consequent fuzzy set members from antecedent

truth values, rule confidences and prior grades of membership of consequent

fuzzy sets in an entire rule set. We will use a notation that is suitable for an entire

rule set. As noted in Section 7.3, monotonic reasoning is indicated as a default

reasoning type for modification of grades of membership of discrete fuzzy sets.

For monotonic reasoning, that is often used when determining grades of member-

ship for discrete fuzzy sets,

Q0 ¼ (P �R) OR Q (7:18)
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We define non-monotonic reasoning as

Q0 ¼ P �R (7:19)

and monotonic downward reasoning as

Q0 ¼ (P �R) AND Q (7:20)

Non-monotonic reasoning is most often used only when invalidating data; rules of

this type are extremely unlikely to fit into this framework. Monotonic downward

reasoning is usually incorporated in the defuzzification process; since defuzzifica-

tion is deferred to the next rule-firing step, monotonic downward reasoning is also

unlikely to be used in this framework.

7.9.1 Conventional Method: The Intersection Rule
Configuration (IRC)

Conventionally, each input discrete fuzzy set is represented by members that

describe the input variable. For example, a numeric input variable velocity
might be represented by discrete fuzzy set speed with members Slow, Medium,
and Fast. A typical rule might be

IF (A1 is a1,i1 AND A2 is a2,i2 AND A3 is a3,i3 . . . ) THEN Q is qj (7:21)

in which A1, A2, . . . are input discrete fuzzy sets and Q is an output discrete

fuzzy set.

With N input discrete fuzzy sets, each with M members, and Q members of the

output fuzzy set, we would have NM antecedents and Q consequent fuzzy set

members. If a single consequent fuzzy set member is associated with each antece-

dent, we have NM rules. In general, we could have up to NM�Q rules. If the R

matrix is sparse, the actual number of rules could be considerably less. In either

case, the rule set could be evaluated by (7.14), (7.15), or (7.16), depending on the

type of reasoning employed.

The well-known problem with systems using rules of this type is the exponential

growth in the number of rules as the number of input variables increases. Assume an

economical formulation in which there is only one consequent fuzzy set member

associated with each antecedent. Say each of the input discrete fuzzy sets has five

members. For two input discrete fuzzy sets, we have 25 rules; for three input sets,

we have 125 rules; for 4 input sets, we have 3125 rules, an exponential increase.

This makes it exceedingly difficult or impracticable to use this type of rule with a

large number of input variables.

We now consider an alternate model of the entire rule set, quite different

from (7.21).
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7.9.2 The Combs Union Rule Configuration

William Combs of the Boeing Company has devised a method to avoid the expo-

nential growth in the number of rules as the number of input variables increases

(Combs and Andrews, 1998). Combs proposes a Union Rule Configuration or

URC. The structure of the rules in the Combs method exploits the following equiv-

alence in the propositional calculus:

½( p1 and p2) implies q� is logically equivalent to ½( p1 implies q) or ( p2 implies q)�

(7:22)

Rules written in the conventional style, which Combs calls the IRC, are similar to this:

IF (U is Ai AND V is Bj AND W is Ck) THEN Z is DRn (7:23)

where DRn denotes the output fuzzy set member assigned to the nth rule. This rule

becomes three in the simplest implementation of the Combs method URC:

IF (U is Ai) THEN Z is DR1

IF (V is Bj) THEN Z is DR2

IF (W is Ck) THEN Z is DR3

(7:24)

The truth value of D is obtained by averaging DRn over N;

D ¼
1

N

X
n

DRn (7:25)

where N is the number of rules in which DRn appears in the consequent.

If we have N input variables X, Y, . . . , i, j, and k in range from 1 toM, and we wish

to include rules with all combinations of i, j, and k, the IRC will require MN rules. The

URC will require M�N rules. The number of rules in the IRC goes up exponentially

with the number of input variables N; the number of rules in the URC goes up linearly

with N. For control systems with a large number of input variables, the Combs URC

system offers considerable economy in the number of rules, as illustrated in Table 7.2.

In practice, the “OR” operator in (7.22) is defined to yield the mean of the oper-

ands. More advanced formulations of the URC (Weischenk et al., 2003) deal

successfully with the questions of precise equivalence between the IRC and URC

methods by employing more than one block of rules and rule-firing step. Neverthe-

less, the simple formulation of the URC in (7.24) and (7.25) works quite well in

many if not most applications.

The utility of the Combs method for classification programs is less clear than for

control programs, and depends on the type of fuzzy set chosen for the input vari-

ables. If numeric input variables are fuzzified into fuzzy sets with members such

as Small, Medium, and Large [as done in Kasbov (1998, p. 219)], and these in
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turn are used in rules similar to (7.23), the reduction in number of rules provided by

the Combs method may be realized. If, however, the membership functions are tai-

lored to the classifications, with input fuzzy set members such as Class_1, Class_2,

and Class_3, the URC method may actually produce a greater number of rules than

the IRC. For example, in the famous Iris classification problem, the IRC program

iris.par requires three rules of the type

IF (in Data PL is setosa AND PW is setosa AND SL is
setosa AND SW is setosa) THEN Class is setosa;

and the URC program iriscombs.par requires 12 rules of the type

IF (in Data PL is setosa) THEN Class is setosa;

7.9.3 Performance of the Combs Method

We were originally somewhat doubtful of the validity of the Combs method, since its

justification is based on rules formulated using the implication operator, as does the

Theory of Approximate Reasoning. (We have previously demonstrated that the

Theory of Approximate Reasoning is not useful in a fuzzy expert system.) Additional

concern was caused by the unusual OR operator Combs uses to combine grades of

membership. We subjected the Combs method to two kinds of tests; a fuzzy

control problem and two classification problems, comparing the Combs Union Rule

Configuration (URC)method, with one antecedent clause per rule, against the conven-

tional Intersection Rule Configuration method (IRC). (In the Exercises for this

chapter, programs are provided for the reader to perform his/her own tests.) We

found that although the precise performance of the URC differed slightly from the

IRC, the performance of the two systems was nearly identical.

7.9.4 Sample IRC and URC Programs

Exercises IRC and URC. IRC.EXE and URC.EXE are very simple compiled

BASIC programs for control of a simulated nonlinear process. The original

BASIC programs, IRC.BAS and URC.BAS, may be viewed from TFLOPS. Both

programs may be run from TFLOPS by two one-line FLOPS programs, IRC.FPS

and URC.FPS. Simple text plots show the membership functions used. Simple

TABLE 7.2 Number of Rules Required by IRC and URC methodsa

Number of Input Variables

1 2 3 4 5

IRC URC IRC URC IRC URC IRC URC IRC URC

3 3 9 6 27 9 81 12 243 15

aWe assume that there are three members to each input variable (fuzzy set); that rules are required for each

combination of the input fuzzy set members; and that each rule has one consequent clause.
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text output is used, one data sample at a time. To run the programs, invoke TFLOPS,

then (in the Examples folder) open and run programs IRC.FPS for the conventional

intersection rule configuration and URC.FPS for the Combs union rule configur-

ation. To see the original BASIC programs, open IRC.BAS and URC.BAS in the

Examples folder. At first, take the default values for the program parameters, and

observe the programs’ performances; then you may try different program parameters

to see their effect. With default parameter values, both the IRC and URC methods

reduce the error to zero (to two significant decimal places) in 12 steps.

For problems of classification, we classified a test set of data from a real-world

application, the echocardiogram program echo.par. Members of the output fuzzy

set of classifications were ranked in order of their grades of membership for both

IRC and URC methods, from highest to lowest. The highest ranking classification,

that with the highest degree of membership in the classification fuzzy set, was the

same with both methods. However, the grades of membership of lower ranking

classifications were better separated from the highest and from each other by the

intersection rule method.

An additional classification test was furnished by the classical Iris classification

data of Fisher. These data are well known as being difficult to classify correctly.

Program IrisCombs.par uses the Combs URC method; program iris.par uses the con-

ventional IRC method, and is discussed more fully in Chapter 11. Using identical

unsophisticated membership functions derived from a training set of even-numbered

data, the IRC method showed a slight advantage, misclassifying 5 out of 150

specimens as opposed to 6 out of 150 by the URC program.

7.9.5 Exercises Iris.par and IrisCombs.par

Both programs in this exercise are written in FLOPS, and are in the Examples folder.

The membership functions used are triangular, and quite unsophisticated. Invoke

TFLOPS, load Iris.par and IrisCombs.par, and compare their performances.

The membership functions are defined by the memfunct FLOPS command, and

may be viewed when running the programs by the drawmemf command. The

syntax of these commands is given in the Manual help file. The membership func-

tions so defined may be modified in two ways: by changing their shape using the

linear, s-shape and normal options, or by changing the specified values. Try

changing the shape and values of the membership functions to see if the number

of incorrect classifications can be reduced. The original triangular membership

functions were derived from the minimum, mode, and maximum of even-

numbered specimens by setting the grade of membership of the mean to 0.5; the

grade of membership of the mode to 1; and the grade of membership of the

maximum to 0.5. This places the left-hand corner, peak, and right-hand corner of

the triangle at:

Left-hand corner (membership zero): 2�minimum2mode

Peak (membership one): mode

Right-hand corner (membership zero): 2�maximum2mode
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In this case, the greater number of rules required by the Combs union rule con-

figuration, as compared with the conventional IRC method, would seem to be a

disadvantage. Where expert knowledge is sufficient, problems with a discrete set

of possible non-numeric outputs (such as classification, decision support, and

trouble-shooting) may require a much smaller number of rules, as described in

Section 7.10. In such cases, it is often not necessary to write rules that cover all com-

binations of the input discrete fuzzy sets and their members. The seldom-realized

ideal in classification is to have one rule for each classification, giving Q rules

rather than MN�Q.

7.9.6 Data Mining and the Combs Method

In problems of data mining, when we deduce the rules from a test data set rather than

employing expert knowledge, the Combs method offers much promise. In many or

most data-mining problems, we must deal with databases that have many variables,

and the rules we seek to deduce are likely to have many input variables. In such

cases, the number of possible conventional (IRC) rules could be extremely difficult

or even virtually impossible to handle, due to the combinatorial explosion of antece-

dent clauses. The Combs method (URC) does not suffer from this disadvantage, since

the number of rules goes up linearly with the number of input variables. In addition,

the Combs method offers a remarkably simple way of handling missing data, making

it unnecessary either to delete entire observations or to attempt to predict them. Only

those rules with non-zero input variable values contribute to the calculation of the

output truth value. Combs has successfully classified a number of such real-world

problems in addition to several commonly used test data sets.

7.9.7 Combs Method Summary

In short, we believe the linear increase in the number of rules with the number of input

variable values furnished by the Combs method means that it has an important role to

play, especially in situations where all combinations of input variable values must be

used, as in fuzzy control and in data mining. For classification problems, when there is

already a good base of expert conceptual knowledge and a limited number of input

variables, and if the rule-reduction techniques described in Section 7.10 are appli-

cable, then the intersection rule matrix will probably continue to be employed. We

think that the importance of the Combs method warrants intensive research.

7.10 REDUCING THE NUMBER OF CLASSIFICATION RULES

REQUIRED IN THE CONVENTIONAL INTERSECTION

RULE CONFIGURATION

We now illustrate a method of reducing the number of rules required by the conven-

tional rule format in classification problems. In this method, we do not simply create

rules with all combinations of input variables, such as fSlow, Medium, Fastg.
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Instead, we try to tailor our rules to a fuzzy set of output variables, such as fClass_1,

Class_2, Class_3, . . .g.
Consider the well-known Iris classification problem, using the data of Fisher

(1936). We have data on values of four attributes: petal length, petal width, sepal

length, and sepal width, together with the correct classification of 150 samples as

one of three species of the genus Iris: setosa, versicolor, and virginica.

The conventional approach is to define four discrete fuzzy sets (linguistic vari-

ables), say PL, PW, SL, and SW, with several members each, say fSmall,
Medium, and Largeg as in done in Kasabov (1998), pp. 152 ff. We also define a

discrete fuzzy set of classifications, say species, with three members: fsetosa,

versicolor, virginicag. We then have a possible 34 ¼ 81 rules of the type

IF (PL is Small AND PW is Medium AND SL is Large AND SW
is Medium)
THEN species is setosa;

and seek to establish membership functions for our input linguistic terms, perhaps

from a training set, that will maximize the number of correct classifications predicted.

It is likely that the data would permit omitting a number of rules of this type,

perhaps half, so that the actual number of rules might be around 15 or 20.

There is, however, another approach that will reduce the number of rules to three.

We achieve this by revising the linguistic terms for our input variables.We now define

these linguistic terms (members) for input discrete fuzzy sets PL,PW,SL, and SW as

setosa,versicolor, and virginica. (Ofcourse, the membership function for

setosa in linguistic variable PL would be different from the membership function

for setosa in linguistic variable PW, e.g.) Our three rules now become:

IF (PL is setosa AND PW is setosa AND SL is setosa AND SW
is setosa)
THEN species is setosa;

Determination of membership functions from test data becomes easier. We can

simply determine the distribution of the input variables for each of the three

species, and use these data to derive our membership functions.

In general, our method for reducing the number of rules to a manageable

minimum amounts to the top-down method of defining the problem by first defining

our outputs, then defining our inputs, and their discretization in a way relevant to the

desired outputs. Combinations of the discretized inputs that do not relate to a desired

output are simply omitted from our rule set as irrelevant to our goal.

7.11 SUMMARY

Inference in an expert system is the process of drawing conclusions from data that is

deriving new data or truth values from input data and truth values. The new data may
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be the final conclusions, or in multistep reasoning, may be intermediate conclusions

that constitute input to the next step.

7.11.1 Data Types and Their Truth Values

Available attribute data types and their truth values may be summarized as:

. Integers, floats, and strings. A single truth value is attached to any value

these attributes may have. This truth value is itself an attribute, accessed by

appending .cf to the attribute name.

. Fuzzy numbers. Values are any number from the real line. Truth values are

defined by a parameterized membership function that maps any real number

value onto its truth value (grade of membership). Fuzzy numbers are used

primarily in approximate comparisons in a rule antecedent. A full range of

approximate comparison operators is available corresponding to the conventional

Boolean numerical comparison operators furnished by most computer languages.

. Discrete fuzzy sets. Values are defined as the names of the members of the

fuzzy set. Each member has a single truth value, its grade of membership of

that member in the fuzzy set.

. [wec4]Membership functions. If a discrete fuzzy set is a linguistic variable,

whose members are linguistic terms describing a numeric quantity, member-

ship functions are attached, one to each linguistic term. These functions map

any real or fuzzy number onto the grade of membership of the corresponding

linguistic term. The grade of membership of the linguistic term is the truth

value of its membership function.

7.11.2 Types of Fuzzy Reasoning

We assume that the truth value of an antecedent has been determined and combined

with the truth value of the rule itself to furnish the antecedent confidence P. We will

denote the truth values of data to be modified as B’, the modified truth value, and B,
the existing truth value.

In data modification by a rule, we consider three types of inference and define

these types quantitatively, in terms of the antecedent confidence and the truth

value of data to be modified.

. Monotonic reasoning. Here truth values in the consequent are nondecreasing.

B’ = P OR B

Monotonic reasoning is useful when modifying values of scalar data, or grades

of membership of discrete fuzzy sets.

. Non-monotonic reasoning. Here truth values in the consequent may increase,

decrease or stay the same.

7.11 SUMMARY 137

TEAM LinG - Live, Informative, Non-cost and Genuine !



B’ = P

Non-monotonic reasoning is useful when modifying truth values directly,

especially when invalidating data previously believed to be true.

. Monotonic downward. Here truth values in the consequent are nonincreasing.

B’ = P AND B

This type of reasoning is useful when combining the grade of membership of a

linguistic term with its membership function prior to defuzzification.

. Approximate reasoning, defined as

B’ = A0 o [A IMPLIES B]

in which o denotes fuzzy composition and IMPLIES denotes any fuzzy

implication operator that reduces to the classical implication for crisp operands.

We define desirable properties for inference in an expert system for these inference

types. We then show that the definitions of monotonic, non-monotonic, and monotonic

downward reasoning all satisfy these desirable properties for their reasoning types, but

the approximate reasoningmethod fails to satisfy all desirable properties for any type of

reasoning.We note that Mamdani inference, which uses a fuzzy AND operator in place

of an implication operator, is precisely the same as our monotonic downward method.

The question of inference in a fuzzy expert systems boils down to the defining of

the way in which values and truth values of consequent data are inferred when a rule

is fired, knowing the prior truth values of the antecedent and of consequent data.

7.12 QUESTIONS

7.1 We have the rule “If A0 ¼ A then B0 ¼ B”, where A0, A, B0, and B are the

discrete fuzzy sets

A ¼
0

a1
,
0:5

a2
,
1

a3

� �
, A0 ¼

0:25

a1
,
0:75

a2
,
0:75

a3

� �
,

B ¼
0

b1
,
0:5

b2
,
1

b3

� �
, B0 ¼

?

b1
,

?

b2
,

?

b3

� �

Calculate B0 by

a. Composing A0 with [Ai AND Bj] (7.2).

b. B0 ¼ pB, where p is the antecedent truth value of A0 ¼ A (7.4).

7.2 What are the advantages and disadvantages of using separate rules for fuzzi-

fication and defuzzification of discrete fuzzy sets?
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7.3 We wish to classify regions of an image from several numeric measurements.

We set up linguistic variables for the input data, and a non-numeric discrete

fuzzy set if possible region classifications. The input variables have been fuz-

zified. We have several rules whose consequent would set the grade of mem-

bership of classification Artifact. Two of these rules are concurrently fireable;

of these, one would set the truth value of Artifact to 0.7, and one would set

it to 0.4,

a. What is the default inference method?

b. What will the truth value of Artifact be after the rules have fired?

c. What rationale can you give for using the default inference method?

7.4 We wish to use the information from a physiological monitor to evaluate the

condition of a patient in an intensive care unit. The data include heart rate, sys-

tolic and diastolic blood pressures, percent of oxygen saturation in both arter-

ial and venous blood, and temperature. We set up linguistic variables for

each of these measurements, with five linguistic terms in each linguistic vari-

able, and fuzzify the input data. The data are collected nearly continuously

(1 sample every 2 s), so we can calculate rates of change for each input vari-

able, and set up corresponding linguistic variables for the rates of change.

Our output consists of two discrete fuzzy sets, one for present condition (good,

fair, poor, bad) and one for changes (improving. stable, deteriorating). We

write rules whose consequents are present condition (condition is good),

and other rules whose consequents are rate of change (state is deteriorating).

We have several rules that have the same consequent. Rule A would set the

grade of membership of “deteriorating” to 0.1; rule B would set its grade of

membership to 0.2; and rule C would set its grade of membership to 0.5.

Since our rules are fired in parallel, all three rules are fired concurrently. To

what value should we set the grade of membership of “deteriorating”?

7.5 We have five input variables with four possible values for each, and six output

variable values.

a. How many rules will be required using the conventional IRC method?

b. How many rules will be required by the Combs Union Rule Configuration

method?
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8 Resolving Contradictions:
Possibility and Necessity

Chapters 6 and 7 dealt with the modification of data and truth values under the

assumption that the truth values represent necessity, the extent to which the data

support a proposition. In this chapter, we also will treat truth values that represent

possibility, the extent to which a truth value represents the extent to which the

data fail to refute a proposition. We denote the necessity of proposition A by

Nec(A), and its possibility by Pos(A). Here, we will consider the dynamics of a

multistep reasoning process. In such a process, we often proceed first to establish

plausible preliminary conclusions that are supported by the relevant data. If the con-

clusions so reached are mutually exclusive, we then proceed to rule out preliminary

conclusions that are refuted by additional data or by existing data looked at more

deeply. In the first of these steps we consider the extent to which the data support

a conclusion, that is, necessity; in the second step, we consider whether any data

refute a proposition, that is, possibility, and any effect a change in possibility of a

proposition might have on its necessity.

While we accept the definition of possibility and necessity given by Dubois

and Prade (1988), we do not accept that all the axioms used to develop conven-

tional possibility theory [Klir and Yuan (1995), Chapter 7] are valid for fuzzy

reasoning with rule-based systems. In particular, we do not accept the axiom

that the propositions involved are nested (A ) B ) C � � �), nor the use of

min–max logic when combining A and NOT A. This last objection is especially

valid since a family of fuzzy logics has been constructed that does obey these

fundamental laws (Buckley and Siler, 1998b and 1999). Since it is well known

that min–max logic does not obey the law of the excluded middle (A and

NOT A ¼ 0), its use in combining A and NOT A to yield min(a, 1-A) is

invalid. For these reasons, the treatment of possibility and necessity developed

here differs substantially from conventional theory; hence, it is somewhat contro-

versial. Aside from theoretical considerations, the theory here has one big

advantage: it works.
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8.1 DEFINITION OF POSSIBILITY AND NECESSITY

Dubois and Prade define possibility and necessity as:

Necessity of a proposition (Nec) is the extent to which the data support its truth.

Possibility of a proposition (Pos) is the extent to which the data fail to refute

its truth.

The term “necessity” is closely analogous to the term credibility in Dempster–Shafer

theory, and the term “possibility” is closely analogous to their term plausibility.

Both possibility and necessity are truth values in [0, 1]. Clearly we are dealing

with two different kinds of truth values. For example, suppose that we have only

this information about proposition A: its current necessity is 0.3, and its current

possibility is 1.0; the truth value (necessity) of proposition P that supports A is

0.4, and the truth value (necessity) of proposition Q that refutes A is 0.2. Nec(A),

the necessity that A is true, is then max(0.3, 0.4) ¼ 0.4. Since Q refutes A, the

extent to which Q fails to refute A is NOT Nec(Q), or 0.8. Then, considering

these new data, Nec(A) ¼ 0.4, and Pos(A) ¼ 0.8.

If our fuzzy reasoning language permits it, we could specify the truth value of a

proposition by the two values, possibility and necessity. However, few if any current

rule-based fuzzy languages permit storing more than one truth value, usually neces-

sity. But since we can calculate the possibility of a proposition from the necessities

of refuting data, we can deal with the most important aspect of possibilities within a

necessity-based system.

8.2 POSSIBILITY AND NECESSITY SUITABLE FOR

MULTI-STEP RULE-BASED FUZZY REASONING

We now develop formulas for possibility and necessity that are suitable for complex

multistep forward-chaining rule-based fuzzy reasoning systems. (We concur with

Anderson (1993) that rule-based systems offer a very powerful way of emulating

human reasoning.) At the ith reasoning step, we denote Nec(A) as Nec(A)i , and

Pos(A) by Pos(A)i . (If a relationship is always true the i subscript is omitted.)

8.2.1 Data Types and Their Truth Values

First, we consider the way in which our system uses truth values. Most truth systems

maintain only one truth value, necessity; if we are to maintain both possibility and

necessity, each truth value consists of these two values.

Now consider the different types of data that we might have. There are scalar or

single-valued data; typically these include integers, floats, and strings; to each of

these a truth value is attached. We also have discrete fuzzy sets, whose members

are words; to each member a truth value is attached. If these words describe

numbers, they are linguistic terms, and their parent fuzzy set is a linguistic variable;
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to each linguistic term there is attached a membership function that maps all or part

of the real line onto truth values for the corresponding linguistic term.

At this point, we can see that systems that maintain both possibility and necessity

could have a problem; the membership function should return two values, both

possibility and necessity. In fact, we know of no such dual-valued membership func-

tions; necessity is returned, and the possibility is assumed to be one.

We will also have fuzzy numbers with attached membership functions similar to

the membership functions for linguistic terms.

Now consider initialization of data values and truth values. As in such computer

languages as C, there are two steps in creating a datum in most computer languages.

First, a template is declared, that tells the compiler what data it can expect. In C,

for example, such a data declaration might be

flt x½20�; (8:1)

This declaration tells the compiler to expect an array x of 20 floating-point numbers,

and the compiler will assign sufficient memory to accommodate that array.

A more complex declaration provides for a data structure. Such a structure might

be, in the C language,

struct Date

{

day int;

month int;

year int;

};

(8:2)

This declaration tells the compiler what to expect in structure Date, but does not

assign memory as yet.

FLOPS uses data declarations similar to (8.2), but not identical. A typical FLOPS

declaration of a data element Region might be

declare Region
rnum int
Area flt
Size fzset (Small Medium Large)
Xbar flt
Xpos fzset (Left Center Right)
Ybar flt
Ypos fzset (Low Center High);

(8:3)

Like (8.2), (8.3) does not actually assign any memory for an instance of Region.

(There may be several instances of Region, probably with different values

of rnum.) Memory is allocated for an instance of Region by the FLOPS make
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command:

make Region; (8:4)

8.2.2 Initialization of Data and Truth Values

When command (8.4) is executed, memory locations are assigned for the values and

truth values of all attributes. Since no data values are specified, by default numbers

are initialized to 0 and strings to blanks. If the truth value of an integer, float, or

string is initially unknown, then its necessity is 0 (nothing supports it) and its possi-

bility is 1 (nothing refutes it). Similarly, the necessity (grade of membership) of a

fuzzy set member is initialized to zero. Possibilities are explicity (for dual-truth-

value systems) or implicitly (for necessity-based systems) initialized to 1.

However, the make command may specify values and truth values, if desired.

For example,

make Region rnum = 1; (8:5)

will assign a value of 1 to that instance of Region. If a value is specified in a make

command but no truth value is specified, by default its necessity will be set to 1. If

we wish, we may specify a different truth value, as in

make Region Area = 25 Area.cf = 800; (8:6)

fOf course, since in FLOPS truth values range from 0 to 1000, in (8.6) the necessity

of Area is actually 0.8 on a [0, 1] scale.g

Parameterized membership functions for fuzzy numbers are specified when the

fuzzy number is created. Parameterized membership functions for linguistic terms

are created by the memf command.

8.3 MODIFICATION OF TRUTH VALUES DURING

A FUZZY REASONING PROCESS

In the following, A is a proposition; Nec(A)0 and Pos(A)0 are its initial truth values.

We assume that, as reasoning progresses,

Nec(A) .¼ Nec(A)0 ¼ 0 (8:7)

Pos(A) ,¼ Pos(A)0 ¼ 1 (8:8)

Nec(A) ,¼ Pos(A) (8:9)

Note that adding supporting evidence may affect necessity, but not possibility;

adding refuting evidence can affect possibility, and by (8.9) can also affect necessity.
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Almost any nontrivial reasoning problem will require multiple reasoning steps.

Denote the reasoning step by subscript i, where i is initially 0. For multistep reason-

ing, when we go from the ith reasoning step to the (iþ 1)th step, we assume

Pos(A)iþ1 ,¼ Pos(A)i (8:10)

Equation (8.10) follows from the fact that added supporting evidence can affect

necessity but not possibility, and adding refuting evidence can never increase

possibilities.

Instead of assuming (8.10), we could have assumed

Nec(A)iþ1 .¼ Nec(A)i (8:11)

The choice between (8.10) and (8.11) becomes important when considering refuting

evidence. If we choose (8.11), so that necessities can never decrease, it becomes

impossible to admit that we made a mistake! This is especially important when

resolving contradictions by ruling out incorrect preliminary conclusions.

At the end of the ith step we have determined Nec(A)i . Consider the effect on

Nec(A)i of proposition P, that supports the truth of A, and of proposition Q, that

tends to refute it. We denote the effect of P alone on Nec(A)i by NecP(A)iþ1 , and

assume

NecP(A)iþ1 ¼ Nec(A)i < Nec(P) (8:12)

With several supporting propositions Pj (8.12) becomes

NecP(A)iþ1 ¼ Nec(A)i
[
j

Nec(Pj) (8:13)

The effect of Q, which refutes A, is more complex. Denote the effect of Q alone on

the necessity of A by NecQ(A)iþ1, and on the possibility of A by PosQ(A)iþ1. Q tends

to reduce the possibility of A. We assume

PosQ(A)iþ1 ¼ Pos(A)i > Nec(:Q) ¼ Pos(A)i > (:Nec(Q)) (8:14)

If we have several refuting propositions Qk, then (8.14) becomes:

PosQ(A)iþ1 ¼ Pos(A)i
\
k

(:Nec(Qk)) (8:15)

By (8.9), (8.15) places an upper limit on NecQ(A)iþ1. Then, combining

NecQ(A)iþ1 ¼ Nec(A)i > PosQ(A)i ¼ Nec(A)i > Pos(A)i
\
k

(:Nec(Qk)) (8:16)
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Since Nec(A)i ,¼ Pos(A)i , (8.16) reduces to

NecQ(A)iþ1 ¼ Nec(A)i
\
k

(:Nec(Qk)) (8:17)

Combining (8.13) and (8.17),

Nec(A)iþ1 ¼ (Nec(A)i
[
j

Nec(Pj))
\
k

(:Nec(Qk)) (8:18)

8.4 FORMULATION OF RULES FOR POSSIBILITY

AND NECESSITY

If Nec(Q) ¼ 1, Nec(:Qk) ¼ 0, and rules with NOT Q in the antecedent will not fire.

On the other hand, rules with Q in the antecedent will not fire if Nec(Q) ¼ 0. Rules

based on (8.18) can be written, with header “rule krule namel block kblock numberl”,

rule support block k
IF (A AND P1 AND P2) (8:19)
THEN Nec(A)=(Nec(A) OR Nec(P1) OR Nec(P2))

rule refute block k+1
IF (A AND (Q1 OR Q2))

(8:20)THEN Nec(A)=Nec(A) AND NOT (Q1 OR Q2),
Pos(A)=(Pos(A) AND NOT (Q1 OR Q2));

Equations (8.19) and (8.20) cannot be fired concurrently in parallel; rules in block k

must be fired before those in block kþ 1. If Nec(Q1) and Nec(Q2) both ¼ 0, (8.20)

will not fire; this is okay, since if there are no refuting data Nec(A) and Pos(A)

remain unchanged. In a single-truth-value system based on necessity, we cannot

store Pos(A), and the second consequent clause in (8.20) need not be written.

8.5 RESOLVING CONTRADICTIONS USING POSSIBILITY

IN A NECESSITY-BASED SYSTEM

An example of the use of possibility in a necessity-based system to resolve

contradictions is given by example program echo.par. In this program, we wish to

determine the anatomical significance of regions in an echocardiogram, noisy

cross-sectional ultrasound images of a beating heart. To do this, the major steps

are first, fuzzify the input data; next, determine preliminary classification using sup-

porting data and necessities; last, rule out contradictory preliminary classifications

using refuting data and calculated possibilities.
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8.5.1 Input Data: Useful Ambiguities

Our critical input data are numerical values of the area, x- and y-centroid of each

image region. Since the image is noisy, these values are somewhat uncertain, and

are represented by fuzzy numbers. These values are fuzzified into three fuzzy

sets; size (TINY SMALL MEDIUM LARGE HUGE), xpos (FAR-LEFT LEFT

CENTER RIGHT FAR-RIGHT), and ypos (VERY-HIGH HIGH MIDDLE LOW

VERY-LOW). Usually, more than one member of each of these fuzzy sets will

have non-zero truth values; since the members are not mutually exclusive, ambigu-

ities are almost certain to be present. Such ambiguities are a very good thing; they

lend robustness to the reasoning process.

In addition, we have a simple string attribute “border”, which has value “YES” if

a region touches the border of the image, and “NO” if the region does not touch the

border.

8.5.2 Output Data: Contradictions

Our output data, the region classifications, are represented by fuzzy set class

fARTIFACT LUNG LA (left atrium) LV (left ventricle) LAþ LV (merged left

atrium and ventricle) RA (right atrium) RV (right ventricle) RAþ RV (merged

right atrium and ventricle) LAþ LVþ RAþ RV (all four chambers artifactually

merged)g. These members are mutually exclusive; if more that one member has a

non-zero truth value, we have a contradiction that will have to be resolved.

8.5.3 Reaching Preliminary Classifications Using Supporting

Evidence and Necessities

Rules for determining preliminary classifications all employ supporting data, and hence

employ necessities, the default truth value for the FLOPS language. An example is

IF (in Region area is LARGE AND xpos is RIGHT AND ypos
is MIDDLE AND border = "NO")
THEN in 1 class is LV;

(In echo.par the preliminary classification rules are created automatically from a

classification definition database; this permits modification of the classification defi-

nitions without rewriting the program. However, this makes the rules more difficult

to access; the “prule” command must be used to inspect them.)

Since the rules for classification as LV and LAþ LV (and RV and RAþ RV)

have identical antecedents, we can be sure that there will be contradictory prelimi-

nary classifications.

Suppose there are more than one rule whose consequent is “class is LV”. Since

the default reasoning is (upward) monotonic, the aggregation procedure will store

the largest of the existing and new truth values as the grade of membership of LV

in fuzzy set class.
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8.5.4 Resolving Contradictions Using Refuting

Evidence and Possibilities

Here, we will consider the rules for resolving the contradiction when a region has been

classified both as LV and as LAþ LV. In this case, if another region in the same image

frame has been classified as LA, we can be sure that the LAþ LV classification is

wrong, and the LV classification is right; if in that frame no other region has been classi-

fied as LA, then we are sure that the LV classification is wrong and the LAþ LV classi-

fication is right. The refuting data for LAþ LV is then the presence of an LA region; the

refuting data for LV is the absence of an LA region. Our rule antecedents will then read

rule (goal Refute LA+LV)

IF (in Region frame = <FR> AND class is LA) (8:21)

(in Region frame = <FR> AND class is LAþLV)

THEN ...

rule (goal Refute LV)

IF (in Region frame = <FR> AND NOT class is LA) (8:22)

(in Region frame = <FR> AND class is LV)

THEN ...

We must now think about how to formulate the consequent. Then antecedent is a

complex proposition, say Q, that refutes a proposition; the antecedent will then

assign a (possibly) new truth value(s) to that proposition. In a necessity-based

system, the new truth value will be the proposition’s necessity.

The new truth value itself can be obtained from (8.17). This requires using the

complement of the truth value of the antecedent. We must now employ non-mono-

tonic reasoning; this can be done by storing truth values directly. In FLOPS, the com-

bined truth value of antecedent and rule is available as the system-furnished variable

<pconf>. Since the truth value of the rule is 1.0 (1000 in FLOPS), the truth value of

:Q for a particular rule instance is given by

tv(:Q) = (1�<pconf>)

Rules (8.21) and (8.22) then become:

rule (goal Refute LA+LV)
IF (in Region frame = <FR> AND class is LA) (8:23)

(in Region frame = <FR> AND class is LAþLV)
THEN class:LA+LV = (min(class:LAþLV, (1 - <pconf>));...
rule (goal Refute LV)
IF (in Region frame = <FR> AND NOT class is LA) (8:24)

(in Region frame = <FR> AND class is LV)
THEN class:LV = (min(class:LV, (1 - <pconf>)));...
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The truth value of the antecedent represents how sure we are that the LV or

LAVþ LV classification should be refuted; its complement represents the possibility

of the LV or LAVþ LV classification.

8.6 SUMMARY

Necessity represents the degree to which the evidence considered to date supports

the truth of a proposition or datum; possibility represents the extent to which the evi-

dence considered to date fails to refute a proposition or datum. Initially, in the lack

of any data supporting or refuting a datum, its necessity is 0 and its possibility

is 1. As more and more supporting data are considered the necessity of a datum

tends to increase monotonically, always subject to the restriction that the necessity

of a datum must be equal to or less than its possibility; as more and more refuting

data are considered, the possibility of a datum tends to decrease monotonically.

In systems that maintain two truth values, possibility and necessity, a datum of

which we have no knowledge at all has necessity 0 and possibility 1. A datum

that is known to be completely false has both necessity and possibility 0. A datum

that is known to be completely true has both necessity and possibility 1.

In systems that maintain a single truth value, necessity, we cannot distinguish

between a datum about which nothing is known from a datum known to be false,

since both have necessity 0. In such systems, we consider a datum to be false

until supporting evidence is found.

Even though necessity-based systems do not maintain the possibility of data, it is

possible to calculate the possibility of a datum from refuting evidence; if the calcu-

lated possibility is less than its existing necessity, the necessity must be reduced to

obey the restriction that necessity is less than or equal to possibility. However, sup-

porting evidence considered in subsequent firing of block of rules could increase the

reduced necessity. It is then advisable first to fire blocks of rules to arrive at prelimi-

nary conclusions, which may be ambiguous or contradictory. We then resolve any

contradictions by considering refuting evidence in rule blocks fired later in the

reasoning process.

8.7 QUESTIONS

8.1 We have said that if there is no supporting or refuting evidence for a datum, its

necessity is 0 and its possibility is 1. Why is this?

8.2 We have postulated the relationship

Nec(A)<= Pos(A)

Suppose that at the end of a rule-firing step, we have calculated Nec(A) ¼ 0.6,

and Pos(A) ¼ 0.4. To maintain that relationship, we can either decrease

Nec(A) to 0.4 or can increase Pos(A) to 0.6. Which should we do? Why?
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8.3 Why should we consider supporting evidence before considering refuting

evidence?

8.4 What is the basis for rejecting the conventional possibility axiom that in

theory, when considering several propositions A, B, C, . . . , that A, B, and
C are nested so that (A ) B ) C � � �)?

8.5 What is the basis for rejecting the conventional possibility axiom that A AND

NOT A ¼ min(A, 12A)?
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9 Expert System Shells and the
Integrated Development
Environment (IDE)

9.1 OVERVIEW

In the days when languages such as FORTRAN were first coming into use, one first

wrote a high-level program using a text editor; compiled the program to an assem-

bler language by running a compiler program; assembled the resulting assembler

code to machine language by running an assembler program; then ran the

machine language program. Usually, the program would not work, so additional

statements were added to locate the error, and back to square one. The painfulness

of this procedure is obvious. Now virtually all high-level languages are implemented

with an Integrated Development Environment (IDE) that permits the programmer to

refer to help files giving details of the language, write his program with a built-in

program editor, compile it with compilation errors reported, run the program with

debugging tools such as breakpoints and inspection variable values during the run

of program, correct any errors in the source code, and immediately rerun the

program to see if the bug has been corrected. Important features of a language devel-

opment environment are listed in Table 9.1.

We must differentiate two types of rule-based fuzzy systems: those used for

general-purpose fuzzy reasoning, and those used for fuzzy control. General-

purpose rule-based fuzzy systems usually are implemented as a language; appli-

cation programs are written in that language; input and output may be either

numeric or linguistic, and are more often linguistic. Fuzzy control systems are

much more stereotyped than general-purpose fuzzy reasoning systems; their rules

employ a very restricted syntax; input and output are almost always numeric.

The restricted range of fuzzy control systems means that their development

environments may be quite different from those for general-purpose systems. Entire

systems may be specified as block diagrams rather than as explicit rules; rule syntax

is especially designed for numeric input and output. Membership function manipu-

lation and display receives much attention, and three-dimensional display of system

inputs and outputs is common. The relative simplicity of control systems means that

help files need not be extensive, and program debugging receives very little attention.
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In this chapter, we will focus out entire attention on development environments

for general-purpose fuzzy reasoning systems. Table 9.2 lists the IDE operations

provided as tool-bar buttons:

Run-time options include setting an output file name, to which all FLOPS text

output is routed; setting a debug trace level; setting a default rule-firing confidence

level; option to display the output file in the text editor on return from the FLOPS

run, an option to control the output-file font, and an option, not run-related, to set

two hot-keys to paste text into the file being edited.

The “General” options are selected by icons on the task bar, just below the menu

bar at the top of the TFLOPS screen. Placing the cursor on an icon will display the

word identification of that option.

TABLE 9.1 Important Features of a Well-Designed Integrated Program

Development Environment

Text editor for writing programs, with color-coding of reserved words and syntax features

Help files with language manual and syntax details, general language features, and sample

programs

Messages for syntax errors

Ability to run and debug the program being edited

TABLE 9.2 TFLOPS Menubar Button Operations

File options:

Open new file

Open existing file

Save file

Print file

Edit options:

Cut

Copy

Paste

Undo

Redo

Find

Repeat

Find previous

Replace

Run options:

Run FLOPS with no program file (disabled)

Run FLOPS with program file being edited

Set run-time options

General:

Relabel rules

Check syntax of program being edited

Run FLEDIT to edit blackboard data files
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While the option to check the syntax of rules in the program being edited is fairly

complete, there are a few syntax errors TFLOPS will not pick up; these will be

picked up by FLOPS when the program is run.

The option to relabel rules is very useful when the program is being written and

debugged, when (as is usual) all or most rules are automatically labeled by FLOPS

itself. Caution: When FLOPS discovers and error in a rule and returns an error

message, the number of the offending rule returned is not necessarily the number

assigned in a comment statement before the rule in the program. It is instead the

rule number that TFLOPS would have assigned by the “relabel rules” option.

Frequent rule relabeling is therefore important.

The FLEDIT option is very useful when blackboard files are used to communi-

cate information to a program or between programs. FLEDIT presents a friendly

way to construct, review or modify blackboard files.

9.2 HELP FILES

Both the FLOPS IDE and FLOPS itself provide a variety of help files. These include

a FLOPS overview, language manual, a fuzzy math review, a review of the syntax of

FLOPS rules, a description of the sample FLOPS programs provided, a short manual

on building fuzzy expert systems, a glossary, some help on getting started, a section

on on-line real-time work, and how to obtain technical support. A list of the help files

in FLOPS and TFLOPS is given in Table 9.3.

Programmers used to procedural languages face some real problems in adjusting

to a data-driven, parallel fuzzy language, and extensive help files are essential to

help overcome these problems.

9.3 PROGRAM EDITING

All text editors provide the ability to save or abandon text entered. A program editor

is different from a general-purpose text editor in that programs are written in a

specific formal language with a specific syntax. It is very desirable to color-code

TABLE 9.3 FLOPS Help Files

FLOPS overview

Manual of FLOPS language

Fuzzy math review

Rule syntax review

Description of sample FLOPS programs

Manual on Building Fuzzy Expert Systems

Glossary

Help on getting started

On-line real-time work

Technical support
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the text according to the specific language syntax; this helps the programmer

master the syntax and correct errors. Every language will have certain reserved

words. These should be separately color-coded for easy identification and error-

avoidance, to help avoid using a reserved word when a nonreserved word should

be used, or incorrectly typing in a desired reserved word. Other desirable features

include separate color-coding for character strings and numbers, and perhaps

more advanced color-coding depending on the specific language syntax. If rules

may be assigned names by default, an automatic rule-relabeling feature is quite

desirable. For production systems, it is quite desirable to be able to check program

syntax prior to a program run.

In TFLOPS, the FLOPS IDE, reserved words are colored blue; strings are colored

red; symbols enclosed in angle brackets (variables and FLOPS reserved data

symbols) are colored green. Comments are shown in gray rather than black. Rule

names may be specified by the programmer or automatically provided by the

IDE. Toolbar buttons are provided to check program syntax and to relabel rules

that have been automatically labeled. Of course, the usual array of edit function

such as search and replace is provided.

In addition to the source code editor, TFLOPS provides an editor FLEDIT for

FLOPS blackboard data files.

The FLOPS IDE differs substantially from those designed to create fuzzy control

programs. Being oriented toward extremely general-purpose use, the FLOPS

IDE resembles those for such languages as Cþþ, also designed for general-

purpose use.

9.4 RUNNING THE PROGRAM

It should be possible to run the program being edited directly from the IDE without

saving the program to disk. The IDE should provide for setting run-time options

prior to the run, such as setting level of detail for program tracing, output to a

debug file in addition to screen output, and setting a rule-firing threshold to be

used other than the default value. Errors found during a run should be reported

back to the programmer, with pointers to offending source code.

9.5 FEATURES OF GENERAL-PURPOSE FUZZY

EXPERT SYSTEMS

Fuzzy rule-based systems designed for general-purpose fuzzy reasoning are con-

siderably more complex in concept than most programs in procedural languages

such as Cþþ.

First, most general-purpose fuzzy expert systems are data-driven; that is, which

rules are fireable depends only on the available data, and not in the position of the

rules in the program. This is true even of sequential rule-firing programs; the fact

that they fire their rules sequentially, one by one, does not mean that the program is
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written in a procedural program language. Second, most fuzzy expert systems fire

their rules in parallel rather than sequentially, the way in which procedural

languages execute their statements. This means that we are dealing with a data-

driven non-procedural language with parallel capabilities, rather than the conven-

tional sequential languages. If the program is quite simple, as are many fuzzy

control programs, this difference may be easily implemented. However, if the

program is to be manually operated, it is quite possible we may need to extract

information from a user in a context-dependent fashion, so that the next question

to be asked may depend on the answer to the previous question. In this case,

sequential rule-firing may be better adapted to the task at hand. If, however, the

data needed by the program are automatically available, such as in database analy-

sis or in real-time on-line problems, parallel programming is probably superior.

Clearly, if we wish to maintain a high degree of flexibility, both sequential

(procedural) and parallel (non-procedural) rule-firing methods should be provided.

Another difference is that rule-based system programs require not only rules, but

also instructions that are directly executed, such as definitions of data elements,

membership functions, unconditional output to and input from the user and the

like; that gives us to running modes, one in which unconditional instructions are exe-

cuted (command mode), and run in which rules are fired (run mode). This nomencla-

ture (command and run modes) is our own, and not standard. For example, Earl Cox

calls rules in our sense conditional rules (fired conditionally on the validity of the

antecedent); in his terms, unconditional rules (always fired) correspond to our

unconditional instructions.

The most important bug-susceptible items in a FLOPS program are (1) the data

automatically created, and (2) the rules themselves. The most important symptoms

that bugs can cause are errors in the data, or errors in the rule firing order. Clearly,

the most important tools are those that permit detecting that a bug exists by inspect-

ing the existing data and the newly fireable rule stack.

9.6 PROGRAM DEBUGGING

The first step in debugging a program is to correct syntax errors in the source code.

In most computer languages, detection of syntax errors is done during program

compilation. While this is also true of FLOPS, TFLOPS provides its own syntax

checker that may be run at any time during program edit. An additional debug

feature furnished by TFLOPS is the setting of FLOPS program run-time options.

These options are shown in Table 9.4.

TABLE 9.4 Run-Time Options Set in TFLOPS

Enable and name output file to log screen output

Set debug trace level, 0–3

Set rule-firing threshold

Display output file on return to TFLOPS
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FLOPS differs from most computer language development environments in that

most debugging features are built into the FLOPS language itself, and are interac-

tively available during a program run. FLOPS provides three types of debugging

commands: data inspection (six commands); rule inspection (six commands); and

rule firing (six commands). If an output log file is enabled, debugging results are

returned to TFLOPS when the program run is concluded for use in modifying

source code. The process of debugging non-procedural programs such as FLOPS

is discussed in Chapter 10, Program Debugging. Major debugging commands

built into the FLOPS run-time module are shown in Table 9.5.

9.7 SUMMARY

A most important step forward in computer programming was the development of

the IDE in the 1980s, which made it possible for the programmer to work interac-

tively and conveniently in program development. In an IDE, the programmer can

switch back and forth between program editing, compiling, and debugging, substan-

tially reducing the time, effort, and aggravation that program development entails.

Help files made it possible to access language manuals during program development

while never leaving the IDE. IDEs for procedural languages are highly developed

and their availability is taken for granted among most programmers.

Since general-purpose expert systems involve languages, it is natural to expect an

IDE for program development. For a program editor, no special problems are

involved. The lack of experience of most programmers in data-driven parallel

fuzzy systems means that more extensive help files are needed than for procedural

languages. Program debugging constitutes a very different problem for a parallel

fuzzy production system than for a procedural language. Except for syntax checking,

FLOPS incorporates most debugging tools into the language itself for use at run

time, including display of membership functions.

An IDE for a fuzzy control system offers great opportunities for making program

development easy. Most importantly, the stylized nature of fuzzy control rules

makes it possible to use tables and block diagrams for program development and

TABLE 9.5 Some Debugging Commands Built Into the FLOPS

Run-Time Module

prdata/ldata—displays or lists current data

prstack—lists newly fireable rules and any rules on the backtracking stack

run N—runs for a selected number of rule-firing steps

breakpoint—sets breakpoints at selected rules or lists current breakpoints

debug—sets level of program trace

explain—shows why rules are or are not fireable, and gives the source of current data

history—list of previously fired rules

keyboard/resume—temporarily exits run mode and accepts keyboard commands

prule—displays rule source code
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test. For general-purpose fuzzy reasoning, however, the greatly expanded rule

syntax means that the IDE must be more like that of (say) the C language than a

fuzzy control IDE, and the IDE should furnish appropriate features for that kind

of program development.

9.8 QUESTIONS

9.1 What is the primary advantage to using an IDE when writing and debugging

programs as compared to using a text editor?

9.2 What features of language and IDE are absolutely necessary?

9.3 How does TFLOPS, the FLOPS IDE, differ from IDEs for procedural

languages?

9.4 What debugging aids are built into the FLOPS run-time module?

9.5 Why are some debugging aids built into the FLOPS run-time module?

9.6 How can we check the syntax of a FLOPS program being edited?

9.7 How can we trace program execution?

9.8 Screen output during a FLOPS run disappears when the FLOPS run termi-

nates. How can we review the FLOPS output after a FLOPS run is over?
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10 Simple Example Programs

10.1 SIMPLE FLOPS PROGRAMS

In this chapter, we will introduce three very simple FLOPS programs. The first,

numbers.fps, tests whether one number is less than, equal to, or greater than

another. The .fps suffix to the program name, number.fps, tells us that this is a

sequential FLOPS program. Next we compare two programs for adding a column

of numbers, one written as a sequential and the other as a parallel program.

Remember the general sequence of major program sections. First, we have the

data declarations. Next, there are the rules. Then there are the commands to

create initial data for the program run; last, we have a run command to start the

actual program run. In complex FLOPS programs, this sequence may be more

complicated; for example, a rule can be written that will automatically create

other rules. We will not deal with this ability in this chapter.

10.2 NUMBERS.FPS

We begin with program NUMBERS.FPS.

10.2.1 Program Listing

:******************************************************
:program NUMBERS.FPS for Boolean tests on two scalar numbers
:******************************************************
write ’compiling program numbers.fps...\n’;
:--------------------------------------------------------------------------------------------------
:DECLARATIONS
declare Numbers

num1 flt
num2 flt;

:--------------------------------------------------------------------------------------------------
:RULES
:rule r0
rule rconf 0 (goal Inputs numbers to be compared.)
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IF (in Numbers num1.cf = 0)
THEN

message nocancel ’Enter two numbers to be compared\,
0 0 to quit.’,

reset,
input "First number?" 1 num1,
input "Second number?" 1 num2,
make Numbers;

:rule r1
rule (goal Tests for zeroes, quits.)
IF (in Numbers num1 = 0 AND num2 = 0)
THEN

message nocancel ’Terminating NUMBERS.FPS.’,
stop;

:rule r2
rule (goal Tests for equality.)
IF (in Numbers num1 = <N1> AND num2 = <N2> AND num2 =
<N1> AND num1 > 0)
THEN

message ’<N1> equals <N2>’,
delete 1;

:rule r3
rule (goal Tests for N1 < N2.)
IF (in Numbers num1 = <N1> AND num2 = <N2> AND num1 <
<N2>)
THEN

message ’<N1> less than <N2>’,
delete 1;

:rule r4
rule (goal Tests for N1 > N2.)
IF (in Numbers num1 = <N1> AND num2 = <N2> AND num1 >
<N2>)
THEN

message ’<N1> greater than <N2>’,
delete 1;

:--------------------------------------------------------------------------------------------------
:MAKES
make Numbers;
string = "NUMBERS.FPS does Boolean comparison of two numbers,
num1 and num2";
string + " for num1 = num2, num1 > num2 or num1 < num2.\n\n";
string + "Here is an extremely simple program, illus-
trating ";
string + "basic principles of a rule-based data-driven
system. ";
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string + "After you have run the program, look it over in
the ";
string + "TFLOPSW editor.\n\n";
string + "If you like, comment out the run command by
placing a colon ";
string + "in front, thus - ’\:run’. You can then enter
’prstack\;’ to see ";
string + "which rules are fireable\; ’prdata\;’ to
inspect the data\; and ";
string + "run 1\;’ to execute one rule-firing
step.\n\n";
string + "ready to run...";
message "<string>";
run;
:******************************************************

10.2.2 Program Structure

First, we note that there are three main sections to the program, as is typical of

FLOPS programs. The first section is “Declarations”, in which the data structures

(data elements in FLOPS) are defined. Next comes the “Rules” section, where we

define our rules. After that comes the “Makes” section, in which the initial data are

created by make commands or read from the blackboard by the transfer
command. Finally, after everything is set up for the run, we issue a fairly long

message to the user, followed by a run command.

This sequence is not completely arbitrary. To write a rule, we must be able to

refer to data, which in turn must be previously defined by declare commands.

Finally, we cannot run the program and execute the rules unless at least some

data have been created. The important fact that dictates that creation of rules

must precede creation of data is that a rule, when first created, does not know
about any data previously created. While this may seem capricious, in complex

programs it permits isolating newer rules created during the program run from

earlier and perhaps outmoded data.

10.2.3 Running the Program

Let us run NUMBERS.FPS to see what it does. We first invoke TFLOPS any way

that is convenient. With TFLOPS running, we edit NUMBERS.FPS by clicking on

FILE, OPEN, EXAMPLES, and finally NUMBERS.FPS. The numbers program

now appears on the screen. We run the program by clicking on RUN and then on

“Run numbers.fps”. FLOPS now begins to run the program.

After a brief “Compiling numbers.fps” written to the top of the screen, the long

message set up at the end of the program appears in a dialog box. We click on OK;

the dialog box disappears, its message is transferred to the screen, and a new dialog

box appears, inviting us to enter two numbers to be compared. We click on OK, and

again the dialog box disappears, its message is transferred to the screen, and a new
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dialog box appears in which we can enter the first of the two numbers. We enter the

first number, then the second in a new dialog box. FLOPS then reports the result of

checking the two numbers, and we are ready to enter two more.

In every case, the contents of a dialog box are transferred to the screen as the

dialog box is closed. This permits us to scroll up and review the program run

from earlier stages, even from the beginning if we so desire.

After trying out several different number pairs during the program run, we are

ready to quit. By repeated tries, we find out that if we press the Cancel button in

an input dialog box, FLOPS immediately terminates, but if we press the Cancel

button in a message box, FLOPS stops running rules and issues a FLOPS prompt

>>. There is some reason behind the apparently completely arbitrary behavior. If

an input command is executed, in general FLOPS cannot proceed without the

input value, so it terminates. If a message dialog box is canceled, FLOPS can inter-

rupt its run, issue a keyboard command to itself, and revert to command mode in

which we can do almost anything we want. If we press Cancel in a message dialog

box, and we wish to quit the run, we can exit by entering an exit; command, by

clicking on the menu button FILE and then EXIT, by clicking on the X button

just below the menu bar, or by clicking on the X button in the upper right-hand

corner.

10.2.4 Using Basic Debugging Commands

Now that we see how the Numbers program runs, let us look at the run in more

detail. To do this, when in TFLOPS and editing NUMBERS.FPS, we comment

out the run; command by placing a colon inform of it, thus: :run;. When we

now run the program, it behaves very differently. Our first dialog box with the

long message appears, and its contents transferred to the screen when it is closed.

But now the second dialog box does not appear; instead, after a “ready to run”

message, we see the FLOPS prompt >>. FLOPS is now in command mode,

waiting for us to tell it what to do. Fortunately, this message has been issued also:

If you like, comment out the run command by placing a colon in front, thus

“:run”. You can then enter “prstack;” to see which rules are fireable; “prdata;” to

inspect the data; and “run 1;” to execute one rule-firing step.

We have already commented out the run command. The suggestion now is to

enter prstack; prdata; and run 1; in succession. We proceed to do this, and get first:

>>prstack;
LOCAL STACK (partially ordered)
******** STACK TOP **********
rule r0 Time Tags 1 pconf 0
******** STACK BOTTOM **********

PERMANENT STACK
******** STACK TOP **********
******** STACK BOTTOM **********
>>
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We see that only one rule is newly fireable (LOCAL STACK), rule r0, and that no

rule instances have been placed on the backtracking stack (PERMANENT STACK).

We go ahead by entering prdata;, and see

>>prdata;
(Numbers (

(’tt’,1)))
>>

Our only data are an instance of data element Numbers, which has been assigned

time tag 1, and no other values.

We can now proceed with run 1; and see that our dialog boxes input the two

numbers to be compared, and return to command mode and the FLOPS prompt >>.
We enter prstack; again.The next time we enter prstack; we get

>>prstack;
LOCAL STACK (partially ordered)
******** STACK TOP **********
rule r3 Time Tags 3 pconf 1000
rule r0 Time Tags 4 pconf 0
******** STACK BOTTOM **********
PERMANENT STACK
******** STACK TOP **********
LOCAL STACK (partially ordered)
******** STACK BOTTOM **********

Two rules are now newly fireable, one with pconf ¼ 1000 and one, r0, with confi-

dence pconf ¼ 0. This situation requires a brief digression.

10.2.5 Confidence Terminology: Antecedent Confidence,

Rule Confidence, and Posterior Confidence (pconf)

Here, we are concerned with three confidences (truth values). One is the rule confi-

dence, assigned when the rule is created. The second is the antecedent confidence,

determined when the truth value of the antecedent is evaluated with actual data. The

third is the posterior confidence (pconf), evaluated by taking the fuzzy AND

(minimum) of the rule and antecedent confidences.

Rule instances are selected for firing if the antecedent confidence is sufficiently

high, that is, equal to or greater than the rule-firing threshold. Newly fireable

rules are ordered according to their pconf values, with the highest pconf being on

top of the stack. When a rule is fired, the consequent instructions are executed

with confidence pconf, which may be zero. (The pconf value can be reset to any

desired value between zero and full confidence by the reset command.)

To return to our two fireable rules. If we were in parallel mode, both rules would

be fired; but we are in sequential mode, so one rule will be picked for firing, and any
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others stacked for backtracking. The rule with pconf 1000 will be selected for firing,

and rule r0 with pconf zero will be placed on the backtracking stack for possible

firing when no rules are newly fireable.

We finish our sequence with run 1; which writes our conclusion about the

numbers to the screen, and follow with prdata; and prstack;

>>prstack;
LOCAL STACK (partially ordered)
******** STACK TOP **********
******** STACK BOTTOM **********

PERMANENT STACK
******** STACK TOP **********
rule r0 Time Tags 4 pconf 0
******** STACK BOTTOM **********

No rules are newly fireable, so we pop the rule on top of the backtracking stack off

the track and execute it. In our case, there is only one rule on the backtracking stack,

r0, so we pop r0 off the stack, and fire it, thus beginning a new loop through our

rules.

We can continue the prdata; prstack; run 1; sequence until we get bored. To

avoid boredom, however, note that there are a bunch of other debugging commands

wemight use. For example, entering debug 1; will print out the names and goals of the

rule instances as they are fired, and prule,rule name.; will list rule,rulename. to

the screen. If we click on the HELP menu item, then on Manual, then on Debugging

Commands, we will see a list of the debugging commands available; clicking on a

command will bring up a description of the command’s syntax and purpose.

10.3 SUM.FPS

In program Sum.fps we load a sequence of numbers into memory before the run

begins, then total this sequence. This is a reasonable task when the sequence of

numbers has been generated automatically, as from a cash register, and stored in

the computer; at the end of the day we run our totals.

10.3.1 Program Listing

:******************************************************
:program SUM.FPS to illustrate recursive arithmetic in
serial FLOPS
:10-15-86 WS
:instances of NUMBER are added sequentially to SUM TOTAL
:******************************************************
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string = "Program SUM.FPS computes the sum of s recur-
sively";
string + " in several sequential steps, one for each
number to be added.\n";
string + "Compiling program SUM.FPS";
message "<string>";
:--------------------------------------------------------------------------------------------------
:DECLARATIONS
declare Number

num flt;
declare Sum

total flt;
:--------------------------------------------------------------------------------------------------
:RULES
:block 0 - accumulates sum recursively in many sequen-
tial steps
:rule r0
rule (goal Accumulates sum recursively in many sequen-
tial steps)
IF ( in Number num <N> )

( in Sum total <T> )
THEN

delete 1,
message "adding <N> to <T> getting \(<N> + <T>\)",
in 2 total (<T> + <N>);

:rule r1
rule rconf 0 (goal Prints out total when no more
instances of r0 are fireable)
IF ( in Sum total <T> )
THEN

message "total of all is <T>\n",
clear backtrack,
halt;

:--------------------------------------------------------------------------------------------------
:MAKES
make Number num 12.34 ;
make Number num 23.45 ;
make Number num 34.56 ;
make Number num 45.67 ;
make Number num 56.78 ;
make Number num 67.89 ;
make Number num 78.90 ;
make Number num 89.01 ;
make Number num 90.12 ;
make Number num 01.23 ;
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make Number num 32.10 ;
make Number num 21.09 ;
make Number num 32.10 ;
make Number num 43.21 ;
make Number num 54.32 ;
make Number num 65.43 ;
make Sum total 0 ;
message "Ready to run sum.fps";
run;
message "Sum.fps finished";
:******************************************************

There are only two memory elements: Number, instances of which will hold the

numbers to be totaled; and Sum, to hold the sum as it is developed. There are also

only two rules, r0 to accumulate the sum, and r1 to print out the total when no more

instances of r1 are fireable.

Note that rule r0 is recursive; whatever the value of total was (<T>), we add the

value of num (<N>) to it to get a new total. Symbols in the antecedent enclosed in

angle brackets are called variables, and are assigned a value when they first appear

in the antecedent. Thus in rule r0 the value of num is assigned to <N>, and the value

of total is assigned to <T>. Variables retain these assigned values throughout the

firing of the rule; thus both <N> and <T> are available in the consequent for arith-

metic operations or printing.

10.3.2 Running sum.fps

When we run sum.fps, we see nothing out of the ordinary. Program SUM.FPS

computes a sum of numbers recursively in several sequential steps, one for each

number to be added. Here is the program output:

Compiling program SUM.FPS
Ready to run sum.fps
adding 12.34 to 0 getting 12.34
adding 23.45 to 12.34 getting 35.79
adding 34.56 to 35.79 getting 70.35
adding 45.67 to 70.35 getting 116.02
adding 56.78 to 116.02 getting 172.8
adding 67.89 to 172.8 getting 240.69
adding 78.9 to 240.69 getting 319.59
adding 89.01 to 319.59 getting 408.6
adding 90.12 to 408.6 getting 498.72
adding 1.23 to 498.72 getting 499.95
adding 32.1 to 499.95 getting 532.05
adding 21.09 to 532.05 getting 553.14
adding 32.1 to 553.14 getting 585.24
adding 43.21 to 585.24 getting 628.45
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adding 54.32 to 628.45 getting 682.77
adding 65.43 to 682.77 getting 748.2
total of all is 748.2
Sum.fps finished

If at the end of the run we enter the debug command history; we see that the

number of rule instances fired equals the number of data points plus one rule for

outputting the sum, which seems very reasonable.

>>history;
Fired Rule History, first to most recent
******** STACK TOP **********
rule r0 Time Tags 17 1 pconf 1000
rule r0 Time Tags 18 2 pconf 1000
rule r0 Time Tags 19 3 pconf 1000
rule r0 Time Tags 20 4 pconf 1000
rule r0 Time Tags 21 5 pconf 1000
rule r0 Time Tags 22 6 pconf 1000
rule r0 Time Tags 23 7 pconf 1000
rule r0 Time Tags 24 8 pconf 1000
rule r0 Time Tags 25 9 pconf 1000
rule r0 Time Tags 26 10 pconf 1000
rule r0 Time Tags 27 11 pconf 1000
rule r0 Time Tags 28 12 pconf 1000
rule r0 Time Tags 29 13 pconf 1000
rule r0 Time Tags 30 14 pconf 1000
rule r0 Time Tags 31 15 pconf 1000
rule r0 Time Tags 32 16 pconf 1000
rule r1 Time Tags 33 pconf 0
******** STACK BOTTOM **********

10.3.3 Running sum.fps with Debugging Commands prstack; and Run 1;

To get a picture of the systems overhead going on, comment out the run command at

the end of sum.fps by placing a colon in front of the command and then run the

program with a sequence of prstack; and run 1; commands.

The first prstack command produces a screen output like this:

LOCAL STACK (partially ordered)
******** STACK TOP **********
rule r0 Time Tags 17 16 pconf 1000
rule r0 Time Tags 17 15 pconf 1000
. . .
rule r0 Time Tags 17 1 pconf 1000
rule r1 Time Tags 17 pconf 0
******** STACK BOTTOM **********
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PERMANENT STACK
******** STACK TOP **********
******** STACK BOTTOM **********

The “LOCAL STACK” lists the newly fireable rule instances at this point in the run;

the “PERMANENT STACK” lists those rule instances that had been found fireable

but were not fired, the backtrack stack. If no rules were newly fireable, when a run
command is executed a rule would be popped off the backtrack stack and fired.

(Since in parallel FLOPS all newly fireable rule instances are fired concurrently,

backtracking only occurs in serial * .fps FLOPS programs.)

In this list, we first give the name of the rule eligible for firing (e.g., rule r0). Next,

we list the identifying time tags of the data that made the rule fireable. Finally, we

list the value of pconf, the combined rule and antecedent confidence. Note that rule

r1 has a pconf value of zero, but is nevertheless fireable. A rule is made fireable if

its antecedent confidence is greater than the rule-firing threshold; in this case rule r1

has full antecedent confidence, but the rule confidence is zero. Rule instances are

fired in the order of their pconf values; a pconf of zero places the rule at the

bottom of the stack, so it will not fire until all rules with greater pconf values

have fired. Since we have not yet executed any rule-firing steps, no rules have

had an opportunity to be placed on the backtrack stack.

After the first ’run 1;’ we execute prstack and find 16 rule instances on

the backtracking stack; after the second ’run 1;’ we have 31; after the third

’run 1;’ we have 45 rule instances stacked; and so on, increasing every

time until we have a couple of hundred rule instances stacked. Since this is a

very simple program and computers are now very fast, we do not notice the

increased systems overhead; but if our program were considerably more

complex and we had a lot more data, the time used up by the system in processing

all the extra rules could be very appreciable, even though almost none of the rules

are ever fired.

Note that there are a number of other debugging commands available. For

example, if prstack shows that rule r1 is fireable and we want to know what

r1 does, we can enter (at the command prompt) >>explain goal r1;
and the goal of r1 will be written to the screen. If we wish even more infor-

mation, >>prule r1; will cause the entire rule to be written out. If prstack

tells us that rule r1 is made fireable by the data with time tag 33, we can

print out this data by entering >>prmem 33;. It is helpful to click on

HELP, Manual and then Debugging Commands to see what commands are

available to you.

10.4 SUM.PAR

When we open sum.par in TFLOPS, it is hard to detect any differences from

sum.fps. Rule r1 is placed in its own block 1, while r0 remains in block 0. The

program itself is listed in Section 10.4.1.
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10.4.1 Program Listing

:******************************************************
:program SUM.PAR to illustrate recursive arithmetic in
parallel FLOPS
:instances of are added in one parallel step to SUM TOTAL
:******************************************************

string = "Program SUM.PAR computes the sum of s recur-
sively";
string + " in one parallel step.\n";
string + "Compiling program SUM.PAR";
message "<string>";

:--------------------------------------------------------------------------------------------------
:DECLARATIONS

declare Number
num flt;

declare Sum
total flt;

:--------------------------------------------------------------------------------------------------
:RULES
:block 0 - accumulates sum recursively in one parallel
step

:rule r0
rule (goal Adds num to sum recursively)
IF (in Number num = <N>)

(in Sum total = <T>)
THEN

write "adding <N> to $<T> getting \(<N> + $<T>\)\n",
modify 2 total = ($<T> + <N>),
fire block 0 off,
fire block 1 on;

:--------------------------------------------------------------------------------------------------
:block 1 - final answer

:rule r1
rule block 1 (goal Prints final sum)
IF (in Sum total = <T>)
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THEN
message "total of all is <T>\n";
halt;

make Number num 12.34;
make Number num 23.45;
make Number num 34.56;
make Number num 45.67;
make Number num 56.78;
make Number num 67.89;
make Number num 78.90;
make Number num 89.01;
make Number num 90.12;
make Number num 01.23;
make Number num 32.10;
make Number num 21.09;
make Number num 32.10;
make Number num 43.21;
make Number num 54.32;
make Number num 65.43;
make Sum total 0;
fire block 1 off;

message "ready to run SUM.PAR\n";
run;
message "SUM.PAR finished.";
:******************************************************

10.4.2 Running sum.par

When sum.par is run, the output seems virtually identical to that from sum.fps.

Program SUM.PAR computes the sum of s recursively in one
parallel step.
Compiling program SUM.PAR
ready to run SUM.PAR
adding 65.43 to 0 getting 65.43
adding 54.32 to 65.43 getting 119.75
adding 43.21 to 119.75 getting 162.96
adding 32.1 to 162.96 getting 195.06
adding 21.09 to 195.06 getting 216.15
adding 32.1 to 216.15 getting 248.25
adding 1.23 to 248.25 getting 249.48
adding 90.12 to 249.48 getting 339.6
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adding 89.01 to 339.6 getting 428.61
adding 78.9 to 428.61 getting 507.51
adding 67.89 to 507.51 getting 575.4
adding 56.78 to 575.4 getting 632.18
adding 45.67 to 632.18 getting 677.85
adding 34.56 to 677.85 getting 712.41
adding 23.45 to 712.41 getting 735.86
adding 12.34 to 735.86 getting 748.2
total of all is 748.2
SUM.PAR finished.

As before, at the end of the run we enter history;, and get this list of fired rule

instances.

>>history;
Fired Rule History, first (stack top) to most recent
(stack bottom)
******** STACK TOP **********
rule r0 Time Tags 17 16 pconf 1000
rule r0 Time Tags 17 15 pconf 1000
rule r0 Time Tags 17 14 pconf 1000
rule r0 Time Tags 17 13 pconf 1000
rule r0 Time Tags 17 12 pconf 1000
rule r0 Time Tags 17 11 pconf 1000
rule r0 Time Tags 17 10 pconf 1000
rule r0 Time Tags 17 9 pconf 1000
rule r0 Time Tags 17 8 pconf 1000
rule r0 Time Tags 17 7 pconf 1000
rule r0 Time Tags 17 6 pconf 1000
rule r0 Time Tags 17 5 pconf 1000
rule r0 Time Tags 17 4 pconf 1000
rule r0 Time Tags 17 3 pconf 1000
rule r0 Time Tags 17 2 pconf 1000
rule r0 Time Tags 17 1 pconf 1000
rule r1 Time Tags 33 pconf 1000
******** STACK BOTTOM **********

So far, there appears to be no advantage to parallel mode.

10.4.3 Running sum.par with prstack; and run 1; Commands

We now run sum.par by repeating the prstack; and run 1; command sequence, with

this output;
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Program SUM.PAR computes the sum of s recursively in one
parallel step.
Compiling program SUM.PAR
ready to run SUM.PAR
>>prstack;
LOCAL STACK (unordered)
******** STACK TOP **********
rule r0 Time Tags 17 16 pconf 1000
rule r0 Time Tags 17 15 pconf 1000
rule r0 Time Tags 17 14 pconf 1000
rule r0 Time Tags 17 13 pconf 1000
rule r0 Time Tags 17 12 pconf 1000
rule r0 Time Tags 17 11 pconf 1000
rule r0 Time Tags 17 10 pconf 1000
rule r0 Time Tags 17 9 pconf 1000
rule r0 Time Tags 17 8 pconf 1000
rule r0 Time Tags 17 7 pconf 1000
rule r0 Time Tags 17 6 pconf 1000
rule r0 Time Tags 17 5 pconf 1000
rule r0 Time Tags 17 4 pconf 1000
rule r0 Time Tags 17 3 pconf 1000
rule r0 Time Tags 17 2 pconf 1000
rule r0 Time Tags 17 1 pconf 1000
******** STACK BOTTOM **********
>>run 1;
adding 65.43 to 0 getting 65.43
adding 54.32 to 65.43 getting 119.75
adding 43.21 to 119.75 getting 162.96
adding 32.1 to 162.96 getting 195.06
adding 21.09 to 195.06 getting 216.15
adding 32.1 to 216.15 getting 248.25
adding 1.23 to 248.25 getting 249.48
adding 90.12 to 249.48 getting 339.6
adding 89.01 to 339.6 getting 428.61
adding 78.9 to 428.61 getting 507.51
adding 67.89 to 507.51 getting 575.4
adding 56.78 to 575.4 getting 632.18
adding 45.67 to 632.18 getting 677.85
adding 34.56 to 677.85 getting 712.41
adding 23.45 to 712.41 getting 735.86
adding 12.34 to 735.86 getting 748.2
>>prstack;
LOCAL STACK (unordered)
******** STACK TOP **********
rule r1 Time Tags 33 pconf 1000
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******** STACK BOTTOM **********
>>run 1;
total of all is 748.2
>>prstack;
LOCAL STACK (unordered)
******** STACK TOP **********
******** STACK BOTTOM **********

In the entire program sum.par, only 17 rule instances have been found fireable, as

compared to hundreds of rules in sum.fps. It is very well known that in production

systems such as FLOPS, the bulk of the program run time (outside of I/O) is used up
by the system in determining which rules are fireable. The improvement in running

time achieved by parallel FLOPS over serial FLOPS can be dramatic.

10.5 COMPARISON OF SERIAL AND PARALLEL FLOPS

Conceptually, serial FLOPS amounts to a depth-first search of a decision tree, and

parallel; FLOPS amounts to a breadth-first search. In practice, if information must

be elicited from a user, when the next question to be asked depends on the

answer to the previous question, serial FLOPS is appropriated; if the information

comes in automatically, or is present at the beginning of the program run, parallel

FLOPS is appropriate. In the sum problem, all the information is available at the

beginning of the run, so the parallel program sum.par is to be preferred. If a

problem can be solved with either serial or parallel FLOPS, the lower overhead

of parallel FLOPS is usually the way to go.

10.6 MEMBERSHIP FUNCTIONS, FUZZIFICATION AND

DEFUZZIFICATION

10.6.1 Membership Functions in FLOPS/

Membership functions in FLOPS are specified by the memf command. This permits

the programmer to specify the point at which the membership function first begins to

rise from zero; the point at which it first reaches 1; the point at which it first starts

down from 1; and the point at which the function reaches zero again. If the function

stays at 1 from -infinity until it starts to drop, the first parameter is set to21e6; if the

function remains at 1 after rising from 0, the last parameter is set to 21e6. An

additional parameter is the shape of the membership function; piecewise linear,

piecewise quadratic, or normally distributed (Gaussian). (In the case of normal

functions, the first and last parameters are the point at which the membership func-

tion reaches 0.5.)

Membership functions are displayed by the drawmemf command. Figure 10.1

shows a typical membership function plot.
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The example program drawmemf.fps illustrates the use of the drawmemf

command.

:******************************************************
:DRAWMEMF.FPS - illustrates drawmemf command
:******************************************************
message "Program DRAWMEMF.FPS to illustrate the drawmemf
command.";
:Specifications for the individual functions are given in the
:memfunct command. The first number is the point where the
:function first begins to rise from zero; the second number is
:the point where the function reaches 1000. The third number is
:the point where the function begins to decline from 1000; the
:fourth number is the point where it reaches zero again.

:If the first number is -1e6, the function starts at 1000 for
all
:values less than the third number, where it begins to decline
:toward zero; the only effect of the second number is to tell
:drawmemf where to start its plot.

:Similarly, if the fourth number is 1e6, the function never
:declinestowardzeroafteritsinitialriseto1000atthevalue
:givenbythesecondnumber;theonlyeffectofthethirdnumber
:is to tell drawmemf where to stop its plot.

message "First membership functions are linear." ;

Figure 10.1 Output of drawmemf command to display membership functions.
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declare Data size fzset (SMALL MEDIUM LARGE);

memfunct Data size linear
SMALL -1e6 0 2 4
MEDIUM 2 4 4 8
LARGE 4 8 10 1e6 ;

drawmemf Data size;

message "Next membership functions are s-shape." ;

memfunct Data size s-shape
SMALL -1e6 0 2 4
MEDIUM 2 4 4 8
LARGE 4 8 10 1e6 ;

drawmemf Data size;

message "Last membership functions are normal.";

memfunct Data size normal
SMALL -1e6 0 2 4
MEDIUM 2 4 4 8
LARGE 4 8 10 1e6 ;

drawmemf Data size;
message "DRAWMEMF.FPS finished." ;
:exit ;
*******************************************************

10.6.2 Fuzzifying Numbers in FLOPS

Fortunately, there is only one generally accepted way of fuzzifying a number. As we

have shown, fuzzifying takes place as shown in Figure 10.2.

The FLOPS command fuzzify is used to fuzzify a number into grades of mem-

bership of a discrete fuzzy set. (A fuzzy set whose members describe a number is

called a linguistic variable.)

Program fuzzify.par illustrates the use of the fuzzify command.

:******************************************************
:program FUZZIFY.PAR - fuzzifies
:******************************************************

thresh 1;

declare Data x flt size fzset (small medium large);
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memfunct Data size normal
small -1e6 1 2
medium 1 2 2 3
large 2 3 1e6;

:rule r0
rule (goal Fuzzifies x into fuzzy set size)
IF (in Data x = <X> AND x <= 3.5)
THEN

message ’Fuzzifying <X>\n’,
fuzzify 1 size <X>,
fire block 0 off,
fire block 1 on;

:Permit firing rules with zero confidence in fuzzy set
member
TestFsetOff;

rule block 1 (goal Prints out results of fuzzification)
IF (in Data x = <X> AND size.small = <S> AND size.medium = <M>

AND size.large = <L>)
THEN

message ’<X> fuzzified: small <S> medium <M> large
<L>\n’,
reset,
in 1 x = (<X> + 0.5),
fire block 1 off,
fire block 0 on;

Figure 10.2 Fuzzifying 2.5; Small 0.25, Medium 0.75, Large 0.
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make Data ^x 0.5 ;

string = "Program fuzzify.PAR\n";
string + "We have only two rules, one to fuzzify, one to
print results.\n" ;

string + "Rule r0 will fuzzify several values of an
input, x, ";
string + "Into a fuzzy set size with three members\:
small,
medium, large.\n";
message "<string>";
prule r0;
fire block 1 off;
message ’Here are the membership functions for fuzzy set
size:\n’;
drawmemf Data size;
message ’Ready to run\n’ ;
:run ;
:message ’Fuzzification demonstration finished.\n’ ;
:exit ;
:******************************************************

10.6.3 Defuzzification in FLOPS

Unlike fuzzification, there are many methods of defuzzification. FLOPS provides

the popular centroid method; and also the average maximum method. The FLOPS

defuzzify command in FLOPS makes defuzzification simple. Program

defuzz.fps illustrates the defuzzification method. Because FLOPS only stores confi-

dences with a resolution of one part in a thousand, the defuzzified value may differ

slightly from the original fuzzified value.

:++++++++++++++++++++++++++++++++++++++++++++++++++++++
:program DEFUZZ.PAR
:++++++++++++++++++++++++++++++++++++++++++++++++++++++

message ’Compiling program DEFUZZ to fuzzify and defuz-
zify height of a person\n’ ;

thresh 1 ;

declare Data
height flt
defuzz flt
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size fzset
( Short Medium Tall) ;

memfunct Data size linear
Short -1e6 4 4.5 5.5
Medium 4.5 5.5 5.5 6.5
Tall 5.5 6.5 7 1e6 ;

message ’Membership functions for fuzzy set size\:\n’ ;
drawmemf Data size ;

:rule r0
rule (goal Enter height data)
IF ( in Data height.cf = 0 )
THEN

input "Enter person\’s height in feet\, 0 to quit\n" 1
height ;

:rule r1
rule (goal Quit on entry of zero height)
IF ( in Data height 0 )
THEN

message nocancel ’Terminating program DEFUZZ\n’ ,
exit ;

:rule r2
rule (goal Fuzzify height into fuzzy set size)
IF ( in Data height <H> AND height > 0 )
THEN

message ’Height before fuzzification: <H>\n’,
fuzzify 1 size <H> ,
fire block 0 off ,
fire block 1 on ;

:enable firing rule with zero confidence in fuzzy set
members
TestFsetOff ;

rule block 1 (goal Print fuzzy set size\, defuzzify into
defuzz)
IF (in Data defuzz.cf = 0 size.Short <S> size.Medium <M>
size.Tall <T>)
THEN

message ’Fuzzified height:\nShort <S> Medium <M> Tall
<T>\n’,
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defuzzify 1 size maxav 1 defuzz;

rule block 1 (goal Print defuzzified value\,
re-initialize program)
IF (in Data defuzz <X>)
THEN

message ’Defuzzified value <X>\n’ ,
in 1 defuzz.cf = 0 height.cf = 0 ,
fire block 1 off ,
fire block 0 on ;

make Data ;
fire all off ;
fire block 0 on ;
message ’Program DEFUZZ ready to run\n’ ;
:run ;

:+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

10.7 SUMMARY

Even extremely simple programs such as those in this chapter can illustrate funda-

mental features of writing, running, and debugging FLOPS programs. The basic

structure of these programs is typical of more complex programs: declaration of

data structures; rules, commonly partitioned into numbered blocks; and creation

of data by make (or data acquisition) commands.

There is a very substantial difference between the ways in which sequential and

parallel programs are executed. Suppose that we have eight rules concurrently fire-

able. In sequential mode, one of these is picked for firing according to some criteria

(usually called a rule conflict algorithm); the rest are placed on a stack for firing if

no rules are newly fireable, called backtracking. In parallel mode, however, all fire-

able rules are fired effectively in parallel; since there are no unfired rules, there are

no rules to place on a backtrack stack.

If parallel FLOPS can be used, it is much more efficient than sequential FLOPS,

since systems overhead is greatly reduced. Parallel FLOPS is especially appropriate

for discrete fuzzy sets, since all fuzzy set members are processed effectively simul-

taneously, making the programming relatively simple and unconvoluted compared

to sequential programs. In either case, FLOPS has two operational modes; run

mode, in which rules are fired and their consequent instructions executed; and

command mode, in which FLOPS command are executed one at a time, from the

FLOPS program or from the keyboard. Executing commands from the keyboard

is especially convenient for interactive debugging.

In seems to be axiomatic that newly written programs will not run, and FLOPS is

not an exception. Debugging in a data-driven language is not the same as debugging

a procedural program, and special techniques are required. FLOPS has the ability to
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single-step through a program using the run 1; command, or to halt the program

when desired by setting rule breakpoints or using the run N; command, where N is

the number of rule-firing steps to execute before reverting from run-to-command

mode. Probably the two most important debug commands to use together with

run 1; are prdata; for inspecting data, and prstack; for seeing which

rules are newly fireable. There are a number of other very useful debug commands

available that should not be neglected.

10.8 QUESTIONS

10.1 In a simple FLOPS program we have three major program sections and a run

command. What are the three program sections?

10.2 In what order must these section and the run command appear in the

program?

10.3 Why must the data declarations come first?

10.4 Why must rule commands precede data creation?

10.5 Three important debugging commands are (a) prstack, (b) prdata, and
(c) run N. What purpose do these commands serve?

10.6 a. What is the :LOCAL stack in FLOPS?

b. In what order are the rules on the LOCAL stack listed?

c. What is the meaning of the pconf symbol?

10.7 What are the LOCAL and PERMANENT rule stacks?

10.8 In what order are the rules on the LOCAL and PERMANENT stacks listed?

10.9 What information about the rules is presented by the prstack command?

10.10 What is the primary difference between serial and parallel FLOPS?

10.11 In terms of availability of information, how do we choose between serial

and parallel FLOPS?
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11 Running and Debugging
Fuzzy Expert Systems I:
Parallel Programs

11.1 OVERVIEW

Conventional procedural languages such as C have one operating mode, sequential;

compiled machine language instructions are executed in source code order, except

for specific transfers of command. FLOPS, on the other hand, has two quite different

operational modes: command mode, which is sequential, and run mode, which is

data-driven and non-procedural. Run mode, in turn, can operate either serially, in

which one rule is fired at a time before modifying data and checking to see if any

rules are newly fireable, or in parallel, in which all fireable rules are effectively

fired at once before resolving any conflicts for data modification and actually mod-

ifying the data, and only then checking to see which rules are newly fireable. These

different operational modes give FLOPS a great deal of power and flexibility, but

also make writing and debugging programs more difficult.

There are several general steps in debugging a program. First, language syntax

errors must be found and corrected; these can be found either using a syntax-

checking option in the IDE, or when the program is compiled. Second, any

run-time bugs should be isolated to a relatively small part of the program. Last,

the program defect itself is found and corrected.

The most challenging task is frequently the isolation of the bug. The same fea-

tures of FLOPS that make it powerful—the data-driven rules, the fuzzy logic,

fuzzy sets and fuzzy numbers, and the parallel rule firing, make it more difficult

to debug. In this chapter, we will deal with general debugging techniques.

Unlikemost languages, the major debugging tools are built into FLOPS itself rather

than into the IDE; this makes interactive debugging during run time very convenient.

11.2 DEBUGGING TOOLS

The debugging process is begun in the IDE by invoking the syntax-check toolbar

feature. (At present, the syntax checking provided by the TFLOPS IDE detects

181

Fuzzy Expert Systems and Fuzzy Reasoning, By William Siler and James J. Buckley
ISBN 0-471-38859-9 Copyright # 2005 John Wiley & Sons, Inc.

TEAM LinG - Live, Informative, Non-cost and Genuine !



most but not all syntax bugs; a few may be detected during the FLOPS run.) After

syntax has been checked OK, the serious debugging begins when the program is

actually run.

Certain debugging tools may be specified within the IDE TFLOPS for a program

run by using the Options menu bar item or by clicking on the Options toolbar button.

These include specification of an output log disk file, setting a debug trace level, and

setting a rule-firing threshold.

FLOPS provides four general types of debugging commands: data inspection (six

commands); rule inspection (six commands); rule firing (seven commands,

including a program trace at selectable levels of detail); and output logging (two

commands). The Integrated Development Environment TFLOPS provides syntax

checking and selection of run-time options; these options include copying FLOPS

output to an output file, choice of four different levels of program trace, and speci-

fication of FLOPS rule-firing threshold. The debugging commands available are

listed in Table 11.1.

All these debugging commands are legal FLOPS commands to be executed by

FLOPS. Usually, these commands are most conveniently executed from the keyboard

in command mode, although debugging commands may be placed in the FLOPS

program as well. If FLOPS is not already in command mode with keyboard entry,

it may be placed in command mode with keyboard input in several different ways:

. At the end of executing a specified number of rule-firing commands (for

example, “run 3”).
. Execution of a “keyboard” or “halt” command.
. By encountering a rule breakpoint, set by, for example, “breakpoint r23”.
. By clicking the <Cancel> button in a message box.
. By placing a debug command in the consequent of a rule.

If keyboard or halt debug commands are placed in the consequent of a rule, they

must be the last command in the consequent, or else the results are unpredictable.

The same effect may often be more flexibly achieved by a rule breakpoint.

11.3 DEBUGGING SHORT SIMPLE PROGRAMS

We will illustrate the debugging process by a simple program that has a number of

bugs, Guess.fps. The user tries to guess a number; Guess tells the user if the guess is

too high, too low, or correct.

Syntax errors, often called compile-time errors, should be checked in TFLOPS

before attempting to run a program. Syntax is easily checked by clicking on the

“syntax check” icon on the TFLOPS tool bar,
p
. Errors and warnings are then

listed at the bottom of the TFLOPS screen. Information on syntax of FLOPS com-

mands can be accessed through the Manual help file. Run-time errors are often more

difficult to correct, and require using the FLOPS debug commands in Table 11.1.

Most hard-to-find bugs in a fuzzy expert system (other than simple language
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errors, usually reported by the program compiler) are concerned with rule fireability;

rules fire that should not, do not fire when they should, or fail to enable the proper

rules for firing next.

Exercise: Guess.fps: basic debugging. We illustrate program debugging by a

simple program guess.fps. Guess asks the user to guess a number that is ran-

domly assigned at the start of the program. After the user inputs his guess, Guess

TABLE 11.1 FLOPS Debugging Commands

Data inspection:

prdata [optional data element names] – prints all or selected data with all attribute values

and time tags.

ldata [optional data element names] – lists all or selected data with data element names and

time tags only.

prmem <time tag> (in command mode); <element number in antecedent> (on RHS of rule).

source tt <time tag> – gives source of specified datum.

prdes – prints complete data declarations.

ldes – lists data declarations, data element names only.

Rule inspection:

prstack – lists newly fireable rules and backtrack stack with time tags of data which make

each rule fireable.

why <rulename> – explains why <rulename> is fireable.

why not <rulename> – explains why <rulename> is not fireable.

prule [optional rule names and rule block numbers] – prints all or selected complete rules.

lrule [optional rule names and rule block numbers] – lists all or selected rules, rule name

and goal only.

fire status – lists rule blocks with On/Off firing status.

Rule firing commands:

debug N – selectable level of trace. 0, no trace. debug 1 lists rule about to be fired; debug 2

also lists each FLOPS command as it is about to be executed; debug 3 also lists memory

before and after modification.

breakpoint <rulename> turns breakpoint on, -<rulename> turns breakpoint off, no rule

names lists active rule breakpoints – returns temporarily to command mode when

breakpointed rule is about to be fired. “resume” commands returns to run mode.

run N – runs for N rule-firing steps, then reverts to command mode. If N not specified, runs

until finished, or when keyboard or halt command is executed.

resume – returns to run mode after breakpoint is hit or keyboard command is executed.

keyboard – stops program, takes command input from keyboard until “resume” command

is executed.

halt – reverts to command mode from run mode.

thresh <N> – sets rule-firing threshold to <N>.

Output logging:

outfile <filename> – copies screen output to output disk log file <filename>.

close <outfile> – closes <outfile>.
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reports if the guess is too high, too low, or OK. If the user’s guess is wrong, another

chance is offered until the number is guessed. The original program, complete with

bugs, is listed below.

guessing game: try to guess a number.

declare Guess
x int
ok int;

:rule r0
rule (goal Input guess)
IF (x = 0)
THEN

write "What is your guess for the number ?\n",
read 1 x,
srand,
in 1 ok = (rand * 10);

:rule r1
rule (goal Guess too low)
IF (ok = <OK> AND x ~< <OK>)
THEN

write "Your guess is too low - guess again\n",
delete 1;

:rule r2
rule (goal Guess too high)
IF (ok = <OK> AND x ~> <OK>)
THEN

write "Your guess is too high guess again\n",
delete 1;

:rule r3
rule (goal Guess correct - stop)
IF (ok = <OK> AND x ~= <OK>)
THEN

write "Your guess is correct! Thanks for the game\n",
halt;

run;

We invoke TFLOPS and load Guess.fps. The initial debugging step is to run the

syntax check, with this result:
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ERROR lines 1-4: ‘guessing’ is not a FLOPS’ command.
ERROR lines 7-11: ‘x’ has not been declared.
ERROR lines 14-18: ‘x’ has not been declared.
ERROR lines 21-25: ‘x’ has not been declared.
ERROR lines 28-32: ‘x’ has not been declared.
0 warning, 5 errors

We see that Line 1 is supposed to be a comment describing the program, but that it

has not been commented out by a colon. We insert a colon at the beginning of Line 1,

and check syntax again:

ERROR lines 7-11: ‘x’ has not been declared.
ERROR lines 14-18: ‘x’ has not been declared.
ERROR lines 21-25: ‘x’ has not been declared.
ERROR lines 28-32: ‘x’ has not been declared.
0 warning, 4 errors

We see that lines 7–11 are rule r0:

rule (goal Input guess)
IF (x = 0)
THEN. . .

We have forgotten to include the name of the data element in all four rules. We

revise r0 and the other rules to read:

IF (in Guess. . .)

and check syntax once more., getting:

0 warning, 0 error

We comment out the run command at the end of the program, and run FLOPS

with program Guess.fps:

ERROR lines 14–18 Rule r1 element # 1 attribute x – fuzzy parameters mis-

specified

FLOPS has uncovered a syntax error which TFLOPS missed. We Exit FLOPS,

returning to TFLOPS, and inspect rule r1:

:rule r1
rule (goal Guess too low)
IF (in Guess ok = <OK> AND x ~< <OK>)
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THEN
write "Your guess is too low - guess again\n",
delete 1;

Rule r1 has specified an approximate comparison when neither of the comparison

operands is fuzzy. We remove the tilde “�” from all rules. A TFLOPS syntax

check shows no errors, so we run Flops again.

>>prstack;
LOCAL STACK (partially ordered)
******** STACK TOP **********
******** STACK BOTTOM **********

PERMANENT STACK
******** STACK TOP **********
******** STACK BOTTOM **********
>>

No rules fireable are newly fireable. We therefore check data:

>>prdata;
>>

There are no data; we have forgotten to create any. We return to TFLOPS, add make
Guess x = 0 to make rule r0 fireable, and run again:

>>prstack;
LOCAL STACK (partially ordered)
******** STACK TOP **********
rule r0 Time Tags 1 pconf 1000
rule r1 Time Tags 1 pconf 1000
******** STACK BOTTOM **********

PERMANENT STACK
******** STACK TOP **********
******** STACK BOTTOM **********
>>

We have two rules fireable instead of only r0. We look at the rules:

>>prule r0 r1;

rule r0 rconf 1000 ON block 0 ON
(goal: Input guess)

IF
(in Guess x = 0)
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THEN
write "What is your guess for the number ?\n",
read 1 x;

rule r1 rconf 1000 ON block 0 ON
(goal: Guess too low)

IF
(in Guess x < 6)

THEN
write "Your guess is too low - guess again\n",
delete 1;

>>prdata;
(Guess (

(‘tt’,1)
(‘x’,0,1000)))

>>

We have not planned well. We could restrict the range of guesses to exclude 0

by revising the r1 antecedent to read (in Guess x < 6 AND NOT x = 0).
Alternatively, we could create an empty instance of Guess, and test x.cf for

zero in rule r0; that is better, since it does not place any restrictions on tests

on the value of x carried out by other rules. We return to TFLOPS and

change x to x.cf in the antecedent of rule r0, and eliminate x = 0 from the

make command:

rule r0 rconf 1000 ON block 0 ON
(goal: Input guess)

IF
(in Guess x.cf = 0)

THEN
write “What is your guess for the number ?\n”,
read 1 x;

make Guess;

We run our program again, but this time we simply run with debug 1 in effect to

trace the rules as they fire:

>>debug 1;
>>run;

*** firing rule r0 pconf 1000
goal Input guess

What is your guess for the number ?
5
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Updating Memory and Partial Matches

*** firing rule r1 pconf 1000
goal Guess too low

Your guess is too low - guess again
Updating Memory and Partial Matches
>>

Our run has stopped for no apparent reason. We check the fireable rule stack:

>>prstack;
LOCAL STACK (partially ordered)
******** STACK TOP **********
******** STACK BOTTOM **********

PERMANENT STACK
******** STACK TOP **********
******** STACK BOTTOM **********
>>

Since rules are made fireable by data, we check data:

>>prdata;
>>

We have no data. The last rule that fired was r1, so we check it:

>>prule r1;

rule r1 rconf 1000 ON block 0 ON
(goal: Guess too low)

IF
(in Guess x < 6)

THEN
write “Your guess is too low - guess again\n”,
delete 1;

>>

We deleted the old data, but did not supply any new data to take its place. We

have two ways of correcting this situation: we can add “make Guess” after

“delete 1”, or can change the delete command to “in 1 x.cf = 0”. Since the
second method is neater, we return to TFLOPS and revise Guess.fps accordingly.

We run again:
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>>run;
What is your guess for the number ?

5
Your guess is too low - guess again
What is your guess for the number ?

7
Your guess is too high guess again
What is your guess for the number ?

6
Your guess is correct! Thanks for the game
>>

11.4 ISOLATING THE BUG: SYSTEM MODULARIZATION

The absolutely essential factor in bug isolation is program modularization—debugging

begins when the program is written in such a way that bugs can be isolated.

In a blackboard system, the top level of modularization is the division of the task

into separate programs, component expert systems, and (if advisable) programs

written in procedural languages, so that each of the blackboard programs performs

a well-defined task. At the top level, then, isolating any bugs is a matter of determin-

ing whether each program is performing its task satisfactorily. Test sets of input

data, with expected results for each program, are required.

Each individual program is in turn modularized; procedural programs into separ-

ate functions, and expert system programs into blocks. When an offending program

is detected, we can then proceed to see if each individual function or block is

working properly. Again, test sets of input data can be used.

The simplest bug is a program syntax defect detected by FLOPS but missed by

TFLOPS that causes FLOPS to issue a syntax error message. In this case, we can

return immediately to TFLOPS, where the error message will be displayed and

the defect corrected.

One of the simplest debugging techniques is to execute a program trace. FLOPS

supplies four trace levels, as shown in Table 11.1.

In production systems, common errors are when a rule or rule block makes itself

improperly refireable, or when a rule or rule block is not fireable when it should be

so. The run N, prstack, and fire status commands are critical here. Errors can be

caused by defects in rules, improper data, or improper metarules to control rule

and block firing.

11.5 THE DEBUG RUN

As noted above, the first thing we need is a test set of input data, a knowledge of the

expected sequence of fireable rules and rule blocks, and a knowledge of the data

modifications expected to occur as rule and rule blocks are successively fired.
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We run TFLOPS, the FLOPS IDE, and read our program either from the key-

board or from a previously created disk program file. We make sure that any run

commands in the program are either preceded by “:keyboard” commands or, if

there is only one run command at the end of the program, it has been commented

out by inserting a colon (:) in front of the run command. It is a good idea to route

output to a debug file, as provided by the “Options” menu item dialog box. In this

dialog box, we can enter the name of our debug file and select an option to

display the debug file in TFLOPS at the end of the run. Now, we click the “Run”

menu item, and the “Run <filename>” sub-menu item; the FLOPS run commences.

FLOPS begins by compiling the program; that is, it compiles the rule antecedents

to an efficient pseudo-code. (Note that in similar expert systems, the bottleneck is

evaluating the rule antecedents to see which rules are new fireable, so the compi-

lation is directed at the most time-consuming part of the program.) If the program

encounters any compilation errors, these are returned to TFLOPS for correction

of the source code. If the program compiles satisfactorily, and no gross errors are

encountered, the program will pause in command mode, indicated by the FLOPS

prompt “>>”. We can now proceed to perform our checks, one by one.

We have two possible problems; incorrect rules fireable, or incorrect data. Both

problems are often simultaneously present. Incorrect data are often the cause of

incorrect rule fireability.

First, we can make sure that we have the proper data by entering “prdata;” at the

FLOPS prompt, and by comparing the actual data with the desired data on our

debugging list. If everything seems OK, we can check whether the proper rules

are fireable by entering “prstack”. This will not only list the newly fireable rules,

but will also give the confidence with which they are fireable.

If all the proper rules are fireable and none other, all is well; we can enter “run 1;”

and begin again with the first step in the preceding paragraph, executing the debug

procedure repetitively until an error is encountered.

If all is not well, we may have rules that are not fireable when they should be;

rules that are fireable when they should not be; or both. We can review the rules

with questionable fireability by entering “prule <rulename>;” at the command

prompt “>>”, and can review the data by entering “prdata <data element

name>;”. (Data elements in FLOPS correspond to data structure names in C; all

data in FLOPS are held in data elements.) For rules that should be fireable but are

not, we enter (at the command prompt) “explain why not <rulename>;” or simply

“why not <rulename>;”. An explanation of why the rule is not fireable will be

written to the screen (and to our debug output file). Similarly, for rules that are fire-

able when they should not be, we enter “explain why <rulename.;” or “why not

<rulename>;”. We then exit FLOPS and return to the IDE, TFLOPS, to correct

the problem. We can compare thoughtfully and at leisure the actual situation as

given by our debug file with what it should be.

This debugging procedure, repetitively entering “prdata”, “prstack”, and “run 1”

to isolate the bug, and using the other debugging commands to pin it down, is simple

to execute if we know what the program status (data and rule fireability) should be at

each rule-firing step, and not too many rule-firing steps are involved.
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11.6 INTERRUPTING THE PROGRAM FOR DEBUG CHECKS

If a run is of evenmodest complexity, a sequence ofprstack,prdata, andrun 1
commands may be too painfully slow to carry out if the difficulty is manifest after a

number of rule-firing steps. If so, it may be desirable to interrupt the program and

return control to the keyboard at some point to inspect data and rule stacks.

FLOPS furnishes a number of ways to do this.

The simplest way is to execute a run N command, where N is the number of

rule-firing steps to take before returning from run mode to command mode. After

inspecting the data and fireable rule stack, and entering any other desired debugging

command, we can enter a new run N followed by a resume command to start

firing rules again.

If it is known that firing a certain rule causes things to go awry, the break
point <rule name> command will return to command mode whenever that

rule becomes fireable, just before it would fire. After executing debug or any

other FLOPS commands, the resume command will return us to run mode.

(Almost all FLOPS commands may be executed during a breakpoint, but a few

are not allowed.)

A quick way to enter command mode is to click the <Cancel> button on a

message box. This will immediately place us in command mode; as before, the

resume command will return FLOPS to run mode.

Finally, the keyboard command will place us in command mode, with FLOPS

expecting the next command to be entered from the keyboard. The keyboard

command is useful if we want to interrupt FLOPS when executing commands

from a program file in command mode rather than when FLOPS is firing rules in

run mode.

11.7 LOCATING PROGRAM DEFECTS WITH

DEBUG COMMANDS

11.7.1 Program Structure

The first step is a clear understanding of program structure and function. If the entire

project consists of two or more different programs, whether FLOPS programs or

executable files written in other languages, we must know what each program is sup-

posed to do, and understand the sequence in which they are to run. Checking the

input and output of each subprogram will help isolate the offending program.

Suppose that the offending program is a FLOPS program. We have already seen

the general structure of a FLOPS program: data declarations, rules organized into

blocks, and data creation. Inside a rule block we have individual rules. Our first

step is to see that the rule blocks are fulfilling their tasks by firing one or more

blocks at a time, and seeing that the data transformations and changes in rule and

block firing status are being properly carried out. From this, we attempt to isolate
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in which block of rules the trouble occurs; from there, to the individual rules and

rule-specific data and control modifications.

We will illustrate these steps by running a program that has no bugs, echo.par.

We strongly suggest that at this point you run TFLOPS, open examples\echo.par

and start running it.

11.7.2 Sample Debugging Session

Exercise: echo.par. Erroneous data may be encountered from several sources. They

may be entered through keyboard, created by a command mode make command,

read in from a file or other external data source, or modified by a rule. Erroneous

data may have any of several effects. They may cause rules to be fireable when

they should not, or cause rules not to be fireable when they should be, or may

simply result in incorrect conclusions.

Data errors that cause errors in rule firing require first detecting when a rule or

rules are incorrectly fireable, or when incorrectly not fireable. This condition is

most readily detected by the prstack command. To illustrate this, run echo.par

until a message box appears starting with “Ready to create new rules and process

input data —”.

At this point, we can enter command mode with keyboard input by simply click-

ing the <Cancel> button. A message box appears starting with “Execute keyboard

commands or scroll—enter ‘resume; to return to program control’.” We click

“OK”, and are now in command mode with keyboard input. We now enter

prstack; and see that a lot if instances of both r0 and r1 and one instance of

r23 are fireable.

Suppose that r0 should not be fireable, and we want to know why. We enter

explain why r0;, or more simply just why r0;. FLOPS replies

>>why r0;
Newly fireable instance 1 of rule r0:
r0 in block 0 newly fireable:
Rule confidence 1000 antecedent confidence 1000
Goal Moves input data to "Region", converts to fuzzy
numbers
Made fireable by these data:
(Data (

(‘tt’,1)
(‘frame’,1,1000)
(‘rnum’,1,1000)
(‘area’,98,1000)
(‘xbar’,185,1000)
(‘ybar’,298,1000) (‘border’,‘NO’,1000)))

time tag 1 made in command mode
Rule and block turned ON for firing.
>>
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We can tell from this that both r0 individually and block 0 in which r0 appears are

fireable, and that the data with time tag 1 has been created in command mode. The

time tag 1 data are an instance of data element Data, with contents as listed. We now

have several possibilities for r0 being “incorrectly” fireable, as we have supposed. If

r0 should not be fireable, the block or rule may have been incorrectly made fireable

by default or by improper use of the fire command; the instance of Data may have

been prematurely created, fail to have been deleted, or may have incorrect values; or

there may be something wrong with the rule itself.

To check the firing status of the rule and block, if we wish, we can enter fire
status;. We do so, and FLOPS replies

block 0 status ON
block 1 status OFF
block 2 status OFF
block 3 status OFF
block 4 status OFF
block 5 status OFF
block 6 status OFF
block 7 status OFF
block 8 status OFF
block 20 status ON
>>

Suppose that so far, all seems OK. Since the instances of Data were created in

command mode, we would like to check where they came from, preferably

without leaving the FLOPS run. We can do this by clicking on “TFLOPS –

echo.par” on the tack bar at the bottom of the desktop. We do so, look for Data

in data creation section at the bottom of the echo.par program, and find that the

instances of Data were transferred from the file “echodata.dat”. We have already

seen the contents of Data instance with time tag one; suppose that the contents

are OK.

We are now reduced to finding something wrong with rule r0. We go back to the

FLOPS run by clicking on FLOPSW on the task bar at the bottom of the desktop, and

inspect rule r0 by entering “prule r0;”, We do so, and see:

rule r0 rconf 1000 ON block 0 ON
(goal: Moves input data to “Region”, converts to fuzzy

numbers)
IF

( in Data frame = <F> AND rnum = <N> AND area = <A> AND
xbar = <X>

AND ybar = <Y> AND border = <B> )
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THEN
make Region frame = <F> rnum = <N> area = <A> 10 0.1

xbar = <X> 20 0
ybar = <Y> 20 0 border = “<B>”;

>>

This rule requires that there be an instance of Data; that the data have values for

attributes frame, rnum, area, xbar, ybar, and border. (These values, whatever they

are, will be transferred to variables <F>, <N>, <A>, <X>, <Y>, and <B> respect-

ively.) Although the values in time tag 1 have been printed out previously, we

would like to verify them. To do this, we enter

>>prmem 1;

and the contents of time tag one are printed out:

(Data (
(‘tt’,1)
(‘frame’,1,1000)
(‘rnum’,1,1000)
(‘area’,98,1000)
(‘xbar’,185,1000)
(‘ybar’,298,1000)
(‘border’,‘NO’,1000)))

>>

We observe that all attributes are numeric, except for “border” which is a char-
acter string. As a final check, we print out the data descriptor (declaration) for Data

by entering

>>prdes Data;

and get

declare Data
tt type int
frame type int
frame.cf type conf
rnum type int
rnum.cf type conf
area type flt
area.cf type conf
xbar type flt
xbar.cf type conf
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ybar type flt
ybar.cf type conf
border type str
border.cf type conf

>>

This shows us that all values of the attributes of Data stored in time tag one are

consistent with the data declaration. We have not been able to find anything wrong.

(Of course, there wasn’t anything wrong in the first place!)

Now suppose that rule r3 should have been fireable, but is not. To check the

reason for this, we enter

>>why not r3;

FLOPS then tells us:

No newly fireable instances of rule r3
Rule r3 status ON
Block 1 status OFF
block turned off for firing
Pattern 1 not fireable
>>

We see that there are two reasons why r3 is not fireable. It is in Block 1, that has

been turned off; and Pattern 1, the first data element in the antecedent of r3, is not

consistent with the data.

To check the firing status of r3, we return temporarily to TFLOPS and check the

fire command that turned off block 1. We see that our program has these fire
commands to be executed in command mode, and none others at the bottom of

echo.par:

fire all off;
fire block 0 on;
fire block 20 on;

The only way block one can be turned on for firing with our existing program is

by firing r23, which will increment the active block by one when fired. However,

rule 23 was on the list of newly fireable rules printed out by the prstack command

that we previously entered, but has not yet fired.

The other reason why r3 is not fireable is that pattern 1, the first data element in

r3, is not consistent with the r3 antecedent. To check this, we print out r3 by

>>prule r3;
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and get

rule r3 rconf 1000 ON block 1 OFF
(goal: Writes out data converted to fuzzy numbers)

IF
(in Region rnum = <N>)

THEN
write "Raw data for region <N> (fuzzy numbers) -\n",
prmem 1 rnum area xbar ybar;

>>

R3 requires an instance of data element Region with some value for attribute rnum.

To check this, we list any instances of Region by entering

>>ldata Region;

which evokes a message box telling us

WARNING Can’t find instances of data element ‘Region’
>>

Remember that a bunch of instances of r0 and r1 are newly fireable, but have not

been fired. We print out r0:

>> prule r0;
rule r0 rconf 1000 ON block 0 ON

(goal: Moves input data to "Region", converts to fuzzy
numbers)
IF

( in Data frame = <F> AND rnum = <N> AND area = <A> AND
xbar = <X>

AND ybar = <Y> AND border = <B> )
THEN

make Region frame = <F> rnum = <N> area = <A> 10 0.1
xbar = <X> 20 0 ybar = <Y> 20 0 border = "<B>";

Of course, there are no instances of Region—they are created by r0, that has not

fired as yet!

At this point, we might stop thinking that r3 should be fireable, check our

program logic, and find that in fact it should not be fireable yet. If there had been

something wrong, we would have found it by now.

11.8 SUMMARY

In FLOPS, debugging is conveniently accomplished interactively during the FLOPS

run by using special debugging commands. When first debugging a FLOPS
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program, it is well to prepare a list of modules containing desired data and rules to be

newly fireable for at least a few initial rule-firing steps. We must now make sure that

it is possible to execute the program one rule-firing step at a time, returning to

command mode after each rule-firing step. The “keyboard;” command is most

useful here. The execution in repeated succession of prdata, prstack, fire status,

and run 1, combined with the options set in TFLOPS of routing the screen output

to a debug file and viewing this file in TFLOPS after the FLOPS run will not

only find many bugs, but will help the newcomer to FLOPS appreciate the steps

that are gone through in a FLOPS run.

For more sophisticated debugging, it may be desirable to interrupt program

execution at selected points. The use of run N or the unrestricted run command

combined with rule breakpoints, followed by execution of the appropriate debug

commands from the complete list, will help find any remaining or more subtle

bugs. Besides the run N command, ways of interrupting program execution and

returning temporarily to command mode with keyboard input include clicking the

<Cancel> button on a FLOPS message box, and the keyboard command to inter-

rupt FLOPS when executing a program in command mode.

11.9 QUESTIONS

11.1 Why is debugging FLOPS programs more difficult than debugging pro-

grams written in conventional procedural computer languages such as C?

11.2 Can debugging be initiated from TFLOPS, the FLOPS IDE?

11.3 How is debugging carried out during a FLOPS run?

11.4 How can a FLOPS run be interrupted by entry of debug commands from the

keyboard?

11.5 How can a FLOPS run be resumed after having been interrupted for entry of

debug commands from the keyboard?

11.6 What are the three general types of debugging commands?

11.7 What are the three indispensable and most generally useful debugging

commands?

11.8 When it is observed that a program has a defect, what is the first step in

debugging?

11.9 What general technique is used to isolate a program defect?

11.10 After a program defect is isolated, what techniques can be used to find the

bug itself?

11.9 QUESTIONS 197

TEAM LinG - Live, Informative, Non-cost and Genuine !



TEAM LinG - Live, Informative, Non-cost and Genuine !



12 Running and Debugging
Expert Systems II:
Sequential Rule-Firing

The topic of knowledge acquisition is a major one in AI circles. The most difficult

part of knowledge acquisition in the AI sense is acquiring expert knowledge from a

domain expert in order to construct the expert system itself. Jackson (1999) deals

with this topic in Chapter 10; Scott et al. (1991) deal with it in detail. Since much

has been written about knowledge acquisition in this sense, we will not attempt to

cover it. Instead, we will deal here with the more mundane topic of acquiring

data from a human user during a program run, and of the properties of sequential

rule-firing programs in general.

In programs that interact with humans by a repeated question–answer sequence,

parallel programs, as dealt with in Chapter 11, do not work well. Instead, programs

that fire their rules sequentially, as in serial FLOPS, do quite well. There are certain

other problems for which sequential rule-firing works better than parallel; we will

briefly consider some of these.

12.1 DATA ACQUISITION: FROM A USER VERSUS

AUTOMATICALLY ACQUIRED

Many expert systems acquire their data from a human user in a context-dependent

fashion; that is, the next question to be asked depends on the answer to the previous

question. Other expert systems acquire their data automatically, notably real-time

on-line programs in which the computer is wired to the source of data. Between

these two extremes there are other possibilities, such as reading data from disk

files, or asking questions of a user in which the sequence of questions is fixed. In

this chapter, we will consider the first data acquisition task, asking questions of a

user when we do not know what question to ask next until the previous question

has been answered. In this context, we decide to write our program in serial

FLOPS and to fire our rules sequentially, one at a time.

In serial FLOPS, after each rule is fired we will reassess rule fireability. If one or

more rules is newly fireable, we will select the rule to be fired by our rule-conflict
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algorithm and stack the rest on top of the backtrack stack; if no rule is newly fireable,

we will pop a rule off the top of the backtrack stack and fire it. If there are no rules on

the backtrack stack, we will revert to command mode. Clearly, the rule-conflict

algorithm must be well understood. The FLOPS rule conflict algorithm is, at top

level, quite simple; rules are first ranked by their pconf (combined rule and antece-

dent confidence) values, with the highest pconf at the top. In case of a tie, rules with

the largest number of antecedent clauses rank highest; if there is still a tie, one of the

highest ranking rules is randomly selected for firing. Jackson (1999) discusses rule-

conflict algorithms under means-end analysis.

Note that each yes/no question we ask can be viewed as an attempt to verify an

hypothesis. Questions that permit multiple discrete replies can be viewed as an

attempt to verify one of a number of hypotheses. Questions such as “How old are

you?” receive an answer, but do not by themselves test a hypothesis, and the

reply does not directly affect the flow of program control, although subsequent

rules may branch to different rules depending on analysis of the reply. In this

chapter, we are establishing the basics of the repeated question–answer process,

and will consider primarily the yes/no type of question. Once the basics are well

understood, the reader can extend the treatment to more complex problems.

We can formulate the Q/A process more formally as a depth-first search of a

decision tree, where each node in the tree corresponds to a hypothesis to be tested

about our problem and a rule or rules to test whether this hypothesis is valid. (If

we were using parallel FLOPS, we would have a breadth-first search.) The

problem we will try to solve is finding out why an auto will not start.

The dynamics of the solution lend themselves to a graphical description shown in

Figure 12.1, where Ri is the rule that tests Hi , the ith hypothesis.

Table 12.1 lists the preceding hypothesis (the last hypothesis verified), the next

hypothesis to be tested, the verifying question, and the reply that verifies the

hypothesis.

In Table 12.1 we begin at Top, where the initial data have made R1, R2, and R3

all newly fireable. R1 is picked and R2 and R3 are placed on the backtrack stack for

Figure 12.1 Decision Tree structure; hypotheses and rules, with typical rule-firing path in a

sequential rule-firing program. A circle around a rule indicates rule firing; a circle around a

hypothesis indicates hypothesis validation.
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firing if our current path turns out to be the wrong one. R1 is fired, asking the user a

question; the reply does not validate H1, and no rules are newly fireable. We reject

that path and backtrack, firing R2. H2 is validated; so far, so good. Now R7, R8, and

R9 are newly fireable. We pick R7 and fire it; the user’s response does not validate

H7 and no rules are newly fireable. We backtrack and fire R8; H8 is validated, and

R13, the terminating rule, is made fireable. Hypothesis H8 is our answer. (If R8 had

not verified H8, we would have continued to backtrack.) We have conducted a

depth-first search of our decision tree.

In such a decision tree, it is very likely that several rules will be newly fireable

concurrently. Very often we will have an idea of which of these rules initiates

the path most likely to lead to our answer. Blind tree searches can be very time-

consuming; it is much better to direct the search along the most likely paths.

There is a very easy way to direct our search; given that (say) H1, H2, and H3

may be ranked in descending order of likelihood as H1, H3, and H2. We simply

assign rule confidences to R1, R3, and R2, the highest going to R1, next highest

to R3, and the lowest to R2. Alternatively, if our hypotheses are implemented as

data items, we assign descending truth values to H1, H2, and H3. If we wish to

compute truth values on the fly as the program run progresses, we can reassign com-

puted truth values to the hypothesis data items. The ability to conduct a directed

search is extremely important in expert systems.

12.2 WAYS OF SOLVING A TREE-SEARCH PROBLEM

The frequent backtracking makes it clear that this problem should be solved with

sequential FLOPS. (If we used parallel FLOPS, we would ask three questions at

once, very confusing for the user.) We will take up two ways of handling this problem.

TABLE 12.1 Hypotheses in Decision Tree for auto2.fps

Preceding Hypothesis Next Hypothesis Question, Verifying Reply

TOP engine won’t turn over Does your engine turn over, ‘n’

engine won’t turn over dead battery Do your lights come on, ‘n’

engine won’t turn over blown fuse Are any of your fuses blown, ‘y’

engine won’t turn over battery connectors Are your battery connectors loose, ‘y’

TOP no fuel to engine Do you smell gas around carburetor, ‘n’

no fuel to engine out of gas Does your gas gauge read empty, ‘y’

no fuel to engine bad fuel filte Is your fuel filter clogged, ‘y’

TOP no spark Can you see spark between plug and

lead, ‘n’

no spark points misadjusted Do your distributor points open

slightly, ‘n’

no spark raining Is it raining, ‘y’

raining ignition wet Is your distributor or ignition wiring

wet, ‘y’
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The first way is based on the conventional notion that expert knowledge is embo-

died in rules. We will write separate rules for each hypothesis to be tested. This

method obviously requires at least one rule for each hypothesis, plus one or two

more for housekeeping and communication with the user. Auto1.fps is such a

program; although it is very simple, it requires 14 rules. If the decision tree were

more realistic, many more rules would be required; we would need one rule for

each node in the decision tree, plus a rule to check that we have verified a terminal

hypothesis, a rule to check if a non-terminal hypothesis is verified, and a rule to

check if a non-terminal hypothesis is invalidated.

The second way of writing the program is based on a different concept of

knowledge representation. We hypothesize that there are two kinds of expert knowl-

edge; knowing what action to take given the available data, properly stored in rules,

and expert factual knowledge, properly stored in databases. We will store the data for

each node in a simple database, where each node will include the last hypothesis ver-

ified, the current hypothesis which the node is testing, the question to be asked, and the

answer that will verify the hypothesis. If we have a database of expert knowledge, we

will need rules to interpret the database. The rules in Auto2.fps are written to interpret

the database. It requires only five rules to search a decision tree of any width or depth:

one rule to ask the user an hypothesis-verifying question; one rule to fire if an hypoth-

esis is verified; one rule to fire if an hypothesis in invalidated; a rule to fire if a terminal

hypothesis is verified; and a rule to fire if we are unable to verify any hypothesis.

In either case, we direct the search path by assigning truth values to the various

hypotheses, the most likely being given the highest truth values.

12.3 EXPERT KNOWLEDGE IN RULES; AUTO1.FPS

12.3.1 Auto1.fps Program: Partial Listing

:*******************************************************
:program AUTO1.FPS - why doesn’t the auto start ?
:all knowledge stored in rules
:total rules = 14 = number of nodes in decision tree + 3
:number of rules goes up as complexity of tree increases
:*******************************************************

string = "Trouble diagnosis\: auto will not start.\n" ;
string + "Auto1.fps has 14 rules - expert knowledge in
rules.\n";
string + "compiling program auto1.fps. . .\n" ;
message "<string>";

declare Answer
reply str
verify str ;
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declare Hypothesis
working str ;

:+++++++++++++++++++++++++++++++++++++++++++++++++++++++
:tests whether engine turns over
:rule r0
rule rconf 999 (goal Check whether engine turns over)

IF (Answer)
(in Hypothesis working.cf = 0)

THEN
reset ,
input "Does the starter turn your engine over (y/n)

?\n" 1 reply lcase y n,
in 1 verify = "n",
in 2 working = "engine will not turn over";

:tests battery
:rule r1
rule rconf 999 (goal Check if dead battery)

IF (in Answer reply = <R> AND verify = <R>)
(in Hypothesis working = "engine will not turn over")

THEN
reset ,
input "Do your lights come on (y/n) ?\n" 1 reply
lcase y n,
in 1 verify = "n" ,
in 2 working = "dead battery" ;

:(Other similar rules, up through rule r10)

:– – – – – – – – – – –– – – – – – – – – – – –– – – – – – – – – – – –– – – – – – –

:report trouble found if at end of path
:rule r11 rule rconf 0 (goal Terminal hypothesis
verified - print trouble) IF (in Answer reply = <R> AND
verify = <R>)

(in Hypothesis working = <H>)
THEN

message ‘Your trouble is <H>\n’ ,
stop ;

:report failure to find trouble
:can’t find the trouble
:rule r12
rule rconf 0 (goal Hypotheses all rejected - can not
find trouble)

IF (in Answer reply.cf = 0)
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(in Hypothesis working.cf = 0)
THEN

message ‘Cannot find the trouble. Call a tow
truck.\n’,
exit ;

:– –– – – – – – – – – – – –– – – – – – – – – – – –– – – – – – – – – – – –– – – –

:backtracks if answer not verified
:rule r13
rule rconf 999 (goal Backtracks if hypothesis rejected)
IF (in Answer reply = <R> AND verify <> <R>)

(in Hypothesis working = <X>)
THEN

reset ,
write ‘Checked <X> NG and backtracking\n’ ,
delete 1 ,
delete 2 ;

:+++++++++++++++++++++++++++++++++++++++++++++++++++++++

make Answer ;
make Hypothesis ;
message ‘AUTO1.FPS ready to run -\n’ ;
:run ;
:*******************************************************

We can already see a major difference between this sequential program and the

parallel program echo.par in Chapter 11. In the parallel program echo.par, we

control the rule-firing by placing the rules in different blocks, and turning individual

blocks on and off for firing. In the sequential programs auto1.fps and auto2.fps, all

rules are by default in block zero, and we control the rule-firing sequence by control-

ling the confidences of the data and hence the antecedent confidence of the rules.

12.3.2 Running auto1.fps

Dynamics of running auto1.fps are illustrated by a program log, started after the

program has been loaded and before any run; commands have been issued.

>>prstack;
LOCAL STACK (partially ordered)
******** STACK TOP **********
rule r0 Time Tags 2 1 pconf 999
rule r4 Time Tags 2 1 pconf 998
rule r7 Time Tags 2 1 pconf 997
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rule r12 Time Tags 2 1 pconf 0
******** STACK BOTTOM **********

PERMANENT STACK
******** STACK TOP **********
******** STACK BOTTOM **********
>>

To begin with, four rules are fireable. Three of these test hypotheses at the top of

the tree, and one (with pconf 0 so it will be the last to fire) reports that we have been

unable to find an answer. We pick r0 for firing.

>>run 1;

Does the starter turn your engine over (y/n) ?

Y

Since the hypothesis being tested by r0 is given by its goal (goal Check whether

engine fails to turn over), we have failed to validate the hypothesis and fire rule

r13 (goal Backtracks if hypothesis rejected).

>>prstack;
LOCAL STACK (partially ordered)
******** STACK TOP **********
rule r13 Time Tags 5 4 pconf 999
******** STACK BOTTOM **********

PERMANENT STACK
******** STACK TOP **********
rule r4 Time Tags 2 1 pconf 998
rule r7 Time Tags 2 1 pconf 997
rule r12 Time Tags 2 1 pconf 0
******** STACK BOTTOM **********
>>run 1;
Checked engine will not turn over NG and backtracking
>>prstack;
LOCAL STACK (partially ordered)
******** STACK TOP **********
******** STACK BOTTOM **********

PERMANENT STACK
******** STACK TOP **********
rule r4 Time Tags 2 1 pconf 998
rule r7 Time Tags 2 1 pconf 997

12.3 EXPERT KNOWLEDGE IN RULES; AUTO1.FPS 205

TEAM LinG - Live, Informative, Non-cost and Genuine !



rule r12 Time Tags 2 1 pconf 0
******** STACK BOTTOM **********
>>

After firing rule r13, we are forced to backtrack and fire rule r4 (goal Check if no fuel

to engine).

>>run 1;
Do you smell gas at your carburetor (y/n) ?
N
>>prstack;
LOCAL STACK (partially ordered)
******** STACK TOP **********
rule r5 Time Tags 8 7 pconf 999
rule r6 Time Tags 8 7 pconf 998
rule r11 Time Tags 8 7 pconf 0
******** STACK BOTTOM **********

PERMANENT STACK
******** STACK TOP **********
rule r7 Time Tags 2 1 pconf 997
rule r12 Time Tags 2 1 pconf 0
******** STACK BOTTOM **********
>>

The hypothesis has been validated, and three rules are newly fireable; r5 (goal Check

if no gas in tank), r6 (goal Check if clogged fuel filter) and r11 (goal Terminal

hypothesis verified – print trouble).

>>run 1;
Does your gas gauge read empty (y/n) ?
y
>>

The hypothesis of an empty gas tank has been validated.

>>prstack;
LOCAL STACK (partially ordered)
******** STACK TOP **********
rule r11 Time Tags 11 11 pconf 0
******** STACK BOTTOM **********

PERMANENT STACK
******** STACK TOP **********
rule r6 Time Tags 8 7 pconf 998
rule r11 Time Tags 8 7 pconf 0
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rule r7 Time Tags 2 1 pconf 997
rule r12 Time Tags 2 1 pconf 0
******** STACK BOTTOM **********
>>

Only one rule is newly fireable, r11 (goal: Terminal hypothesis verified – print

trouble). We fire it.

>>run 1;
Your trouble is out of gas
Terminating FLOPS: 0 warnings, 0 errors

And our run is completed.

Incorrect rule-firing order is a major source of bugs in serial FLOPS programs,

and the prstack debugging command is of paramount importance. If the rule-

firing order observed is incorrect, we can rely on the debugging techniques devel-

oped in Chapter 11 for parallel programs to isolate the problem. Usually incorrect

rule-firing order is due to incorrect data assignments, since we are using the data

and their truth values to control the order in which rules are fired.

12.4 EXPERT KNOWLEDGE IN A DATABASE: AUTO2.FPS

While the approach taken by auto1.fps of placing expert knowledge in rules works,

the resulting program is not easy to maintain; any change or addition requires mod-

ifying the program. The number of rules can be fairly large; one for each node in the

decision tree plus three additional housekeeping rules, adding up to 14 rules in this

very simple program.We now consider an alternate approach; placing expert knowl-

edge in a database, and writing rules to interpret that database. This approach, used

in auto2.fps, gives a five-rule program that is independent of the size of the decision

tree. If we had a thousand nodes in our decision tree, we would still have only five

rules. Our decision tree structure remains that of the hypotheses in Table 1; however,

the multiple rules are different. In auto2.fps, we have only one hypothesis-verifying

rule; r0. The other rules are housekeeping rules, to ensure that the rules are fired in

the proper order and to tell the user what is going on.

12.4.1 Expert Knowledge Database Structure

First, let us consider the database itself. Each record represents a single node,

defined by

declare Node :library data
hypo1 str :preceding hypothesis
hypo2 str :current hypothesis
question str :hypothesis-verifying question
verify str ; :hypothesis-verifying response
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If the preceding hypothesis hypo1 has been verified, then our database says that

we should check whether hypo2 is true. To do this we ask question; if the reply

is verify, then hypo2 has been verified. Any other reply invalidates hypo2.
Clearly, this is expert knowledge; knowing what tests should be made, and in

what order, and how to verify if the test was passed or not is a matter for the

skilled person. We have one other small database of messages to tell the user if a

terminal hypothesis is verified:

declare Messages
hypo str :verified hypothesis
message str; :message to send

12.4.2 auto2.fps Program Listing

In the following listing, we have deleted some more-or-less cosmetic features.

:*******************************************************
:program AUTO2.FPS - general tree search program
:*******************************************************
:DECLARATIONS
declare Answer :element to store user’s reply
reply str ;

declare Node :library data
hypo1 str :preceding hypothesis
hypo2 str :current hypothesis
question str :hypothesis-verifying question
verify str ; :hypothesis-verifying response

declare Messages
hypo str :verified hypothesis
message str ; :message to send

declare Working :working hypothesis at the moment
hypo1 str :preceding hypothesis
hypo2 str :hypothesis under test
verify str ; :hypothesis-verifying yresponse

:+++++++++++++++++++++++++++++++++++++++++++++++++++++++
RULES
:rule r0
rule (goal Sets up hypotheses, gets user response to
question)
IF (in Answer reply.cf = 0)
(in Working hypo1 = <H1>)
(in Node hypo1 = <H1> AND hypo2 = <H2> AND question = <Q>

AND
verify

= <V>)
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THEN
reset,
input "<Q> (y/n) ?\n" 1 reply lcase y n,
in 2 hypo1 "<H1>" hypo2 "<H2>" verify "<V>",
delete 3;

:rule r1
rule (goal fires if hypothesis accepted)
IF (in Answer reply = <R>)

(in Working hypo1 = <H1> AND hypo2 = <H> AND verify =
<R>)
(in Node hypo1 = <H> AND hypo2 = <H2>)

THEN
reset ,
write ‘Verified <H>, next hypothesis <H2>\n’ ,
in 1 reply.cf 0 ,
in 2 hypo1 "<H>" hypo2 "<H2>";

:rule r2
rule (goal fires if hypothesis rejected)
IF (in Answer reply = <R>)

(in Working hypo2 = <H> AND verify <> <R>)
THEN

write ‘rejected <H> and backtracking\n’,
delete 1 ,
delete 2 ;

:writes out verified hypothesis and quits
:rule r3
rule rconf 0 (goal writes out verified terminal
hypothesis and quits)
IF (in Answer reply <R>)

(in Answer reply = <R>)
(in Working hypo2 = <H2> AND verify = <R>)
(in Messages hypo = <H2> AND message = <M>)

THEN
write ‘Verified hypothesis <H2>\n’ ,
message nocancel ‘<M>\n’ ,
write ‘Auto2 finished\n’ ,
exit;

:rule r4
rule 0 (goal fires if can\’t find the trouble)
IF (in Working hypo2.cf = 0)
THEN

message ‘Can\’t verify any hypothesis. Better call a
mechanic!\n’ ,
exit ;

:+++++++++++++++++++++++++++++++++++++++++++++++++++++++
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:MAKES
:expert knowledge database
transfer Node from node2.dat ;
transfer Messages from messages.dat ;

:internal memory elements
make Answer;
make Working hypo1 "TOP" ;
message ‘AUTO2.FPS ready to run -\n’ ;
:run ;
:exit ;
:*******************************************************

Our program maintains the same basic structure—declarations, rules, and makes,

although this time we transfer data from two FLOPS data files using the transfer
command. Since the ability to transfer knowledge to and from expert knowledge

databases or to transfer structured data from one program to another is important,

FLOPS furnishes a standard database format for such transfers, and a special

program (FLEDIT) for creating and editing such files. Files node2.dat and messa-

ges.dat are such files, created and edited by FLEDIT. Since we are now relying

on data external to the raw program itself, the expert-knowledge data files are an

important source of possible bugs.

Here, we have departed from the traditional AI view that expert knowledge is

embodied in rules. We divide expert knowledge into two categories; skills and

factual knowledge. Skills are realized in rules; factual knowledge is stored in data

bases. Anderson (1993) has independently come to the same conclusion. We have

a basis for this distinction; one dictionary definition of learning is “the act or

process of acquiring knowledge or skill”. One important skill is the ability to inter-

pret factual knowledge; the rules in auto2.fps embody precisely this skill.

To view the most important file, node2.dat, we must first invoke TFLOPS, then

open auto2.fps. Next click on the TOOL menu item, then on FLEDIT. The main

FLEDIT screen appears, with auto2.fps in the Flops File box. That is fine—we must

now open our data file. Click on File, Open, and (in the Examples folder) node2.dat.

The first record now pops up on our screen. We can now navigate in the database

by clicking on First, Previous, Next, and Last, insert new records, create a new data-

base, and other options that are more-or-less obvious. If we wish, we can also view

messages.dat. We cannot view a data file until FLEDIT knows the corresponding

FLOPS program, since the data declarations are stored there rather than in the data file.

12.4.3 Running and Debugging auto2.fps

As usual, we begin by commenting out the run; command at the bottom of the

program. After one or two preliminary messages, the FLOPS prompt appears, and

we begin with prstack;
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>>prstack;
LOCAL STACK (partially ordered)
******** STACK TOP **********
rule r0 Time Tags 24 1 23 pconf 1000
rule r0 Time Tags 24 5 23 pconf 996
rule r0 Time Tags 24 8 23 pconf 993
rule r4 Time Tags 24 pconf 0
******** STACK BOTTOM **********

PERMANENT STACK
******** STACK TOP **********
******** STACK BOTTOM **********

We have three instances r0 newly fireable. We check what r0 is supposed to do:

>>explain goal r0;
Goal of rule r0 is:
Sets up hypotheses, gets user response to question

There is a slight disadvantage to this method; before, we could check the goal of a

rule to find out exactly what it was trying to do, but now rule r0 tests all our hypoth-

eses. We can, however, check the data that made the rule fireable to see what the

hypothesis is that is being checked. We note that in the three instances of r0 up for

firing, that the only data time tag not in common is the middle one, tt 1. We then enter

>>prmem 1;
(Node (

(‘tt’,1)
(‘hypo1’,’TOP’,1000)
(‘hypo2’,’engine won’t turn over’,1000)
(‘question’,’Does your engine turn over’,1000)
(‘verify’,’n’,1000)))

>>

Very good. We continue;

>>run 1;
Does your engine turn over (y/n) ?
Y
>>prstack;
LOCAL STACK (partially ordered)
******** STACK TOP **********
rule r2 Time Tags 26 25 pconf 1000
******** STACK BOTTOM **********
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PERMANENT STACK
******** STACK TOP **********
rule r0 Time Tags 24 5 23 pconf 996
rule r0 Time Tags 24 8 23 pconf 993
rule r4 Time Tags 24 pconf 0
******** STACK BOTTOM **********
>>

What does r2 do?

>>explain goal r2;
Goal of rule r2 is:
fires if hypothesis rejected
>>run 1;
rejected engine won’t turn over and backtracking
>>prstack;
LOCAL STACK (partially ordered)
******** STACK TOP **********
******** STACK BOTTOM **********

PERMANENT STACK
******** STACK TOP **********
rule r0 Time Tags 24 5 23 pconf 996
rule r0 Time Tags 24 8 23 pconf 993
rule r4 Time Tags 24 pconf 0
******** STACK BOTTOM **********

No rules are newly fireable, so we will pop another instance of r0 off the stack

and test another hypothesis.

>>run 1;
Do you smell gas around carburetor (y/n) ?
n
>>prstack;

LOCAL STACK (partially ordered)
******** STACK TOP **********
rule r1 Time Tags 28 27 6 pconf 995
rule r1 Time Tags 28 27 7 pconf 994
rule r3 Time Tags 28 27 16 27 pconf 0
******** STACK BOTTOM **********
PERMANENT STACK
******** STACK TOP **********
rule r0 Time Tags 24 8 23 pconf 993
rule r4 Time Tags 24 pconf 0
******** STACK BOTTOM **********
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>>explain goal r1;

Goal of rule r1 is:
fires if hypothesis accepted
>>run 1;
Verified no fuel to engine, next hypothesis out of gas
>>prstack;
LOCAL STACK (partially ordered)
******** STACK TOP **********
rule r0 Time Tags 30 6 29 pconf 995
rule r0 Time Tags 30 7 29 pconf 994
******** STACK BOTTOM **********
PERMANENT STACK
******** STACK TOP **********
rule r1 Time Tags 28 27 7 pconf 994
rule r3 Time Tags 28 27 16 27 pconf 0
rule r0 Time Tags 24 8 23 pconf 993
rule r4 Time Tags 24 pconf 0
******** STACK BOTTOM **********
>>run 1;
Does your gas gauge read empty (y/n) ?
y
>>prstack;

LOCAL STACK (partially ordered)
******** STACK TOP **********
rule r3 Time Tags 32 31 17 31 pconf 0
******** STACK BOTTOM **********
PERMANENT STACK
******** STACK TOP **********
rule r0 Time Tags 30 7 29 pconf 994
rule r1 Time Tags 28 27 7 pconf 994
rule r3 Time Tags 28 27 16 27 pconf 0
rule r0 Time Tags 24 8 23 pconf 993
rule r4 Time Tags 24 pconf 0
******** STACK BOTTOM **********
>>explain goal r3;
Goal of rule r3 is:
writes out verified terminal hypothesis and quits
>>run 1;
Verified hypothesis out of gas
Fill ‘er up!
Auto2 finished
Terminating FLOPS: 0 warnings, 0 errors

And our run is over.
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12.4.4 Advantages of Database-Defined Tree Search Method

The primary advantages of the “expert knowledge in the database” method for

decision tree searching are maintainability, flexibility and ease of debugging.

A decision-tree searching programming is likely to require maintenance by

adding, deleting, or modifying the node structure. The one-rule-per-hypothesis

method of auto1.fps requires program modification by changing or adding rules,

with all the error possibilities that this entails. The expert-database method of

auto2 leaves the program intact, and requires only modification of the database.

Further, the availability of FLEDIT as a database editing tool means that we have

available a database editor automatically customized for our particular application.

Flexibility comes about with the ability of the program to learn, if we wish,

although the programming involved is not simple. We can modify the search direction

by assigning hypothesis truth-values under program control. We even have the ability

to add, delete, or modify hypotheses from the database under program control.

Ease of debugging is achieved by the availability of FLEDIT to debug our data-

base, since FLEDIT is automatically customized for each data item in each data

element involved.

12.5 OTHER APPLICATIONS OF SEQUENTIAL RULE FIRING

So far, we have dealt with the search of a decision tree, with particular application to

the simple problem of determining why an auto will not start. The same general

scheme can be applied to more complex problems.

12.5.1 Missionaries and Cannibals

We have on one bank of a river a certain number of missionaries, an equal number of

cannibals, and a boat with limited carrying capacity. The problem is to get everyone

to the other side of the river using the boat. The restriction is that neither in the boat

nor on either bank can the cannibals outnumber the missionaries.

The problem is solved by simulation. After initialization, inputting the number of

missionaries (and cannibals) and getting the boat capacity we check to see if the boat

is big enough to solve the problem, and we begin the simulation.

The general scheme is to load missionaries and cannibals into the boat, starting on

the left bank. The first passenger will always be a missionary; after that we use one

rule to load a missionary and another rule to load a cannibal. These rules have equal

priority, so one will be chosen at random, and the other placed on the backtrack

stack. When the boat is ready to sail, we check to see if the cannibals outnumber

the missionaries on shore or on the boat. If so, we fire a rule that prints a warning,

but does not make any rules newly fireable; in consequence, we will pop the rule that

loads the other kind of passenger, and check again. This time we should pass the

check, and the cycle repeats until the boat is fully loaded. When this occurs, a

rule becomes fireable that will cause the boat to sail to the right bank and unload.
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If everyone has been carried to the right bank, we are done; if not, we repeat the

loading/sailing cycle on the right bank (now loading only two passengers), then

on the left bank, and so on, until we have finished our task.

While MC.FPS employs backtracking and rule confidences to help direct the

search like the AUTO programs, its backtracking scheme is more complex.

Here is the output of an MC.FPS run.

Enter number miss (= # cann)
3
Enter max in boat
4
rule r1 - initializing
rule r2 - loading first missionary on left
rule r4 - loading cannibal on left
rule r4 - loading cannibal on left
rule r4 - loading cannibal on left
rule r8 - miss will get eaten on left in boat, backtracking

[rule r3 will now be popped off the backtrack stack.]

rule r3 - loading missionary on left
Boat holds miss 2 cann 2 total 4
leaving miss 1 cann 1 total 2
rule r5 - ready to sail from left
rule r19 - checking new bank totals on right
rule r20 - unloading on right
Trip complete - now miss 2 cann 2 on R bank
rule r10 - loading missionary on right
rule r11 - loading cannibal on right
Boat holds miss 1 cann 1 total 2
leaving miss 1 cann 1 total 2
rule r14 - ready to sail from right
rule r16 - checking new bank totals on left
rule r17 - unloading on left
Trip complete - now miss 2 cann 2 on L bank
rule r2 - loading first missionary on left
rule r4 - loading cannibal on left
rule r4 - loading cannibal on left
rule r3 - loading missionary on left
Boat holds miss 2 cann 2 total 4
leaving miss 0 cann 0 total 0
rule r5 - ready to sail from left
rule r19 - checking new bank totals on right
rule r20 - unloading on right
Trip complete - now miss 3 cann 3 on R bank
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Missionaries and Cannibals finished
Terminating FLOPS 1: 0 warnings, 0 errors

This was a fairly lucky run—we only had to backtrack once.

Exercise MC.FPS. Open TFLOPS, then open examples/MC.FPS. Explore the flow

of the program in detail, something like this:

>>prstack;
LOCAL STACK (partially ordered)
******** STACK TOP **********
rule r4 Time Tags 9 8 4 pconf 1000
rule r3 Time Tags 9 8 4 pconf 0
******** STACK BOTTOM **********

PERMANENT STACK
******** STACK TOP **********
******** STACK BOTTOM **********
>>goal r4;

Goal of rule r4 is:
Load a cannibal on left
>>goal r3;

Goal of rule r3 is:
Load another missionary on left
>>run 1;

rule r4 - loading cannibal on left
>>prdata Boat;

(Boat (
(’tt’,11)
(’miss’,1,1000)
(’cann’,1,1000)
(’total’,2,1000)
(’state’,’L’,1000)))

>>prstack;
. . .
LOCAL STACK (partially ordered)
******** STACK TOP **********
rule r4 Time Tags 11 4 10 pconf 1000
rule r5 Time Tags 11 4 10 pconf 999
rule r3 Time Tags 11 4 10 pconf 0
******** STACK BOTTOM **********
PERMANENT STACK
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******** STACK TOP **********
rule r3 Time Tags 9 8 4 pconf 0
******** STACK BOTTOM **********
>>

Use any other debugging commands that might help illuminate the flow of the

program.

12.6 RULES THAT MAKE THEMSELVES REFIREABLE:

RUNAWAY PROGRAMS AND RECURSION

Rules can make themselves refireable very simply; by modifying an antecedent

datum so that the modified data still satisfy the antecedent. This can be the source

of an annoying bug causing a runaway program, or can be the basis of a powerful

technique, recursion. In recursion, the same rule or rules fire over and over again

with something different each time they fire until some criterion is met that termi-

nates the process.

We have two example programs to illustrate recursion, but will not go into them

in any detail; the student may run and explore them at will.

Program LOGIST.FPS solves a simple ordinary differential equation, that for

logistic growth or a population. The differential equation is

dP

dt
¼ rs 1�

s

K

� �
dt

where P is the size of the population, r is the growth rate for an individual, K is the

population size at equilibrium (carrying capacity), and t is time.

The program has three rules, one of which is to terminate the run. Rule r0 calcu-

lates the time derivative of the population; rule r1 updates the population size from

the first derivative. These two rules fire recursively until either of two termination

criteria is met. At that point, rule r2 fires and notifies the user that the run is over.

Program HANOI.FPS is also recursive, but a bit hairier than LOGIST. Hanoi

solves the Tower of Hanoi problem. In this problem, we have three vertical spindles,

and a number of disks with holes in their center placed on one spindle in decreasing

order of size. The problem is to move the disks one at a time from one spindle to

another until all disks are on spindle 3. The restriction is that a larger disk can

never be placed on a smaller one.

HANOI has five rules. Rule r0 simply inputs the number of disks to be moved; r1

quits when finished; r2, r3, and r4 do the work recursively. The processing rules are

made fireable recursively when r3 creates a new instance of the data that made the

rules first fireable, or r4 modifies that instance; rule r2 deletes the new instance when

we are finished with it. Running HANOI with three or four disks will give a good

picture of its recursion scheme in operation; it is not all that simple!

Note that recursion is not limited to systems that fire their rules sequentially

by default, as do FLOPS programs with a .fps suffix. A simple recursive program

like LOGISTIC.FPS can simply be renamed LOGISTIC.PAR, and will operate
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identically when run as a parallel program. But this is unusual; for example,

HANOI.FPS will not run properly at all as a parallel program.

However, since FLOPS can switch back and forth between serial and parallel

modes, we can utilize this capability to embed serial recursion in a parallel

program. HANOI.PAR starts out in parallel mode, and fires its first rule (r0) in

that mode. But r0 has the command parallel; in its consequent, and the recursive
rules are fired in serial mode.

12.7 SUMMARY

When our expert system wants to work interactively with a user to acquire infor-

mation, so that the next question to be asked depends on the answer to the previous

question, sequential rule-firing is clearly indicated. However, sequential rule-firing

is only required during the data acquisition phase; if it seems desirable, we can

switch to parallel rule-firing after the information has required us to analyze it.

We now consider the choice of methods between having one rule for each

hypothesis (auto1.fps) and having one data element instance for each hypothesis

(auto2.fps). It may well be better to write and debug our first prototype program like

auto1.fps, with only a few hypotheses to be tested, with one rule for each hypothesis.

After this small prototype is debugged, we can switch to the more concise and easily

maintainable method of placing our hypotheses and related information in a data-

base, with rules to interpret the database (auto2.fps). The availability of FLEDIT

as an automatically customized database edit helps make the database method

more user-friendly.

12.8 QUESTIONS

12.1 How is acquiring data from a human user different from automatically acquir-

ing data from some instrument?

12.2 What are the nodes in a decision tree?

12.3 In a depth-first search of a decision tree, what happens if a hypothesis is

accepted?

12.4 What is a rule conflict algorithm? What is its relevance to a depth-first search

of a decision tree?

12.5 Under what circumstance does backtracking take place?

12.6 What happens during backtracking?

12.7 What two different concepts of knowledge representation can be used when

writing rules to conduct a depth-first search or a decision tree?

12.8 What are the advantages and disadvantages of placing knowledge in rules or

in databases?

12.9 How canwe determine whether a problem is best solved by a depth-first (sequen-

tial rule-firing) or breadth-first (parallel rule-firing) search of possibilities?
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13 Solving “What?” Problems
when the Answer is
Expressed in Words

13.1 GENERAL METHODS

As noted previously, fuzzy control problems expect a numerical answer. Because of

the tremendous success of fuzzy control, fuzzy systems people, with a few excep-

tions, notably Earl Cox (1999), James Baldwin et al. (1995), and Combs and

Andrews (1998), have concentrated on that field. When problems demand a non-

numeric answer, they have often been “solved” by getting a numeric answer, then

relating this number to a word response. However, this is quite a dangerous

method. Suppose, for example, that we have a problem in medical diagnosis,

where the three remaining possibilities are disease A, disease B, and disease

C. We assign 1 to disease A, 2 to disease B, and 3 to disease C. We run our

program, defuzzify fuzzy set disease, and find that the answer is 2; we confidently

report that the patient has disease B. In fact, our data rule out disease B, but are

unable to distinguish between disease A and disease C. Our answer, the average

of 1 and 3, is completely wrong.

How should we handle this problem correctly? There are two general ways. In the

first way, we set up a discrete fuzzy set, say Disease, with members fA, B, Cg. We

use our program to assign grades of membership (truth values, truth values) to A, B,

and C. After the program is run, we report the memberships in fuzzy set Disease: A

(500), B (0), C (500). The conclusion, that either the patient has both diseases or

more tests should be run for differential diagnosis between A and C, is very

obvious. If our results are not so clear cut and we wish a general idea as to how con-

fident we are that we have ruled out all but a single disease, we can check the ambi-

guity and fuzziness of fuzzy set Disease.

It can happen that we do not know in advance what the possible outcomes are. We

note that it is possible to declare a fuzzy set at run time, by including the data

declaration in the consequent of a rule.

In the second way, we set up a string variable named Disease, and let our analysis

create instances of Disease with the appropriate truth values as the data indicate.
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This method is less convenient than the discrete fuzzy set method just above, but

may be more flexible in some cases. This is especially true for our program if the

possible outcomes are initially unknown and the program discovers what the poss-

ible outcomes might be one by one as the program run progresses.

In general, fuzzy sets are useful for storing preliminary conclusions, and

for output when more than one outcome is concurrently possible (as in medical

diagnosis); strings are useful for storing final conclusions when only one

outcome is possible, and sometimes for storing preliminary conclusions when for

some reason it is inconvenient to define the fuzzy set of possible outcomes in

advance.

The domain of problems whose answers are expressed in words is enormous. The

limitation imposed by restricting answers to numeric can be imagined if you could

understand everything that was said to you, but could only respond in numbers.

So far, we have no generally agreed-upon name for this class of problems; we

sometimes call them non-numeric problems, sometimes classification problems.

Lately, Lotfi Zadeh has used the term “Approximate X”, where X can be almost

anything.

We will present three FLOPS programs to handle “What?” questions: iris.par, to

classify Iris plants; echo.par, to classify regions of ultrasound images of a beating

human heart; and schizo.par, to derive preliminary psychological diagnoses from

a set of behavioral traits. Iris.par uses four numeric input data; echo.par uses three

numeric and one non-numeric data; and schizo.par uses only the truth values of

non-numeric data.

13.2 IRIS.PAR: WHAT SPECIES IS IT?

Since classification is a very common problem, a number of test data bases are com-

monly available. One is the famous Iris data base (Fisher 1936), difficult to classify

correctly. The database has six items for each of 150 Iris plant specimens: an iden-

tifying specimen number; four numeric features: petal length, petal width, sepal

length and sepal width; and correct species name (setosa, versicolor, or virginica).

Our program will try to classify each of the 150 specimens properly, with as few

rules as possible.

We will use parallel rule firing, since it is not necessary to elicit information from

a user; all the information, the values of the features of the 150 specimens, will be

available at the beginning of the run from a disk file.

Overall, our plan will be to set up a discrete fuzzy set species with members

setosa, versicolor, and virginica; fuzzify the input features; determine the species

from the fuzzified features; and output the results to the user.

Remember that our default rule-firing threshold is 500. That will not work for

us—we need to fire just about everything fireable, so we set our rule-firing threshold

to 1 by

Thresh 1:
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13.2.1 Planning Our Data Elements and Membership Functions

First, we will need a data element to hold the input data. This choice seems easy:

declare Data N int PL flt PW flt SL flt SW flt orig str;

where N is the specimen ID number, PL is the petal length, PW petal width, SL sepal

length, SW sepal width, and orig the correct species of this specimen as biologically

determined.

We also need another data element (say Iris) to hold processed data about our

specimen, including the discrete fuzzy set representation of input numbers PL,

PW, SL, and SW. Most people familiar with fuzzy control might choose fuzzy

sets something like this:

declare Iris
PetalL fzset (Small Medium Large)
PetalW fzset (Small Medium Large)

...

While this seems quite reasonable at first glance, in fact it is far from the best

choice. We do not really care whether a petal length is Small, Medium, or Large;

we want to know whether it is characteristic of setosa, versicolor or virginica.

The following is much better:

declare Iris
PetalL fzset (setosa, versicolor, virginica)
PetalW fzset (setosa, versicolor, virginica)

...

These fuzzy sets will serve us well when we have to define membership functions for

fuzzifying the input data; we can draw our membership functions from the charac-

teristics of plants belonging to the three species.

In addition to the fuzzified features PetalL . . . , we need a fuzzy set of

classifications:

Species fzset (setosa versicolor virginica)

and a place to store the original correct classification for checking our results, and

(since we can expect contradictory classifications to be reported) a place to put a

final crisp classification.

We can now lay out our next data element in detail.

declare Iris
N int :specimen ID number
PetalL fzset (setosa versicolor virginica)
PetalW fzset (setosa versicolor virginica)
SepalL fzset (setosa versicolor virginica)
SepalW fzset (setosa versicolor virginica)
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species fzset (setosa versicolor virginica)
orig str :correct classification
final str; :final classification

Note that we do NOT use the common linguistic terms such as Small, Medium,

Large. Instead, we use the names of the species that we are seeking to determine.

Here is the DECLARATIONS section of our program, less cosmetics:

declare Data N int PL flt PW flt SL flt SW flt orig str;
declare Iris

N int :specimen ID number
PetalL fzset (setosa versicolor virginica)
PetalW fzset (setosa versicolor virginica)
SepalL fzset (setosa versicolor virginica)
SepalW fzset (setosa versicolor virginica)
species fzset (setosa versicolor virginica)
orig str :correct classification
final str; :final classification

Nowwemust providemembership functions for our fuzzy sets of features.We could

spend a lot of time on this, but for our purposes, we will simply take the lowest, highest,

and median values for each feature and species from a training subset of the

data, even-numbered specimens. We will use normal (bell-shaped) membership func-

tions, with the peak being at the median point, the lower 0.5 membership point being at

themidpointminus twice the distance to the lowerpoint, range, and the higher zero point

being at the midpoint plus twice the distance to the lowerpoint. This way, the range of

the membership function is twice the range of the training set, giving a reasonable cer-

tainty that we will not miss anything. We show in Figure 13.1 the stylized membership

functions for PetalL, shown as triangular rather than normal for clarity.

The membership function definitions for PetalL are

memfunct Iris PetalL normal
: Training set, even numbers

setosa 3.60 5.00 5.00 6.40
versicolor 3.90 5.90 5.90 7.50
virginica 5.00 6.50 6.50 9.30;

Figure 13.1 Iris Data. Membership functions for Petal Length (PetalL).
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13.2.2 Writing Our Rules: Getting Started

We have accomplished our first task, defining our data. Now we can lay out a general

outline not of individual rules, but of the rule block structure. The structure below in

Table 13.1 may seem very simple, but it does what we need to do.

In Block 0, we need one rule to create instances of Iris corresponding to the input

raw data, and one rule to fuzzify the input data, for a total of two. In block 1, we need

one rule for each classification, or three rules. In block 2, we need one rule to detect

incorrect classifications, and one rule to detect specimens that we failed to classify at

all, or two rules. This gives us a total of seven rules we must write.

We have supplied a FLOPS data file, iris.dat that we can use to read in the data

after we have compiled our rules, but before we have actually run any. Note that a

rule does not know anything about data read in before the rule is compiled. So we

assume that memory element Data will have its 150 sets of values read in from a disk

file before we start to fire any rules.

Reading in the data has created 150 instances of memory element Data, but we

have no instances of our most important data element, Iris. We need to create one

instance of Iris for every instance of Data, and need to copy the original classifi-

cation and the specimen ID number from Data to Iris. Our first rule does this:

:rule r0
rule block 0 (goal Make instances of Iris from instances
of Data)
IF (in Data N = <N> AND orig = <ORIG>)
THEN

write "Making instance of specimen <N>\n",
make Iris N = <N> orig = "<ORIG>";

When we start to fire this rule, there will be 150 instances of Data in working

memory, and 150 fireable instances of rule r0. Since we are running parallel

FLOPS, all instances will fire effectively at once with minimal systems overhead.

Now that the data are in and our instances of Iris created, we can fuzzify our input

data. After that we will be ready to classify our specimens. We will place our classi-

fication rules in a separate rule block 1. Instead of writing separate metarules to control

rule firing, we will place the rule firing controls directly in the rule consequents,

:rule r1
rule block 0 (goal Fuzzify input data)
IF (in Data N = <N> AND PL = <PL> AND PW = <PW> AND SL = <SL>

TABLE 13.1 Rule Block Structure for iris.par

Block Function Number of Rules

0 Makes instances of Iris, fuzzifies input data 2

1 Classifies specimens 3

2 Detects incorrect or missing classifications 2
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AND SW = <SW>)
(in Iris N = <N>)

THEN
write "Fuzzifying specimen <N>\n",
fuzzify 2 PetalL <PL>,
fuzzify 2 PetalW <PW>,
fuzzify 2 SepalL <SL>,
fuzzify 2 SepalW <SW>,
fire block 0 off,
fire block 1 on;

13.2.3 Writing Our Rules: Classifying the Specimens

Nowwe are ready for our classification rules. Our forethought in fuzzifying the input

data into linguistic terms such as “setosa” instead of terms like “Medium” makes this

task very easy. We do have to remember to activate the next rule block for analysis

of our results.

Since the Iris database is well known for its difficulty, we expect to have many

contradictions. The simplest method of resolving contradictions is also the least

reliable, but for the sake of simplicity we will adopt it and take the most likely of

the classifications as being the correct one. To do this, each classification rule

tries to set the value of final in Iris to a string representing the classification at

which the rule has arrived, by the consequent command in 1 final is “Iris-setosa”

(versicolor, virginica). We now depend on FLOPS’ monotonic reasoning to store

the most likely value. If the old value of final has a truth value less than the new

value, the old value will be replaced; but if the old value of final has a truth value

greater than the new value, the old value will not be replaced. (If the two truth

values happen to be precisely equal, the old value will be replaced anyhow. Hand-

ling equal truth values differently can also be done, but it takes more programming

than we want to get into right now.)

:rule r2
rule block 1 (goal classify as setosa)
IF (in Iris PetalL is setosa AND PetalW is setosa AND

SepalL is setosa AND SepalW is setosa)
THEN

write "Classifying as setosa conf <pconf>\n",
in 1 species is setosa,
in 1 final is "Iris-setosa",
fire block 1 off,
fire block 2 on;

:rule r3 (13:1)
rule block 1 (goal classify as versicolor)
IF (in Iris PetalL is versicolor AND PetalW is versicolor

AND SepalL is versicolor AND SepalW is versicolor)
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THEN
write "Classifying as versicolor conf <pconf>\n",
in 1 species is versicolor,
in 1 final is "Iris-versicolor",
fire block 1 off,
fire block 2 on;

:rule r4
rule block 1 (goal classify as virginica)
IF (in Iris PetalL is virginica AND PetalW is virginica

AND SepalL is virginica AND SepalW is virginica)
THEN

write "Classifying as virginica conf <pconf>\n",
in 1 species is virginica,
in 1 final is "Iris-virginica",
fire block 1 off,
fire block 2 on;

13.2.4 Writing Our Rules: Reporting Results

We do not really need to report correct answers, since our program is supposed to

detect these and anyway, there would be too many of them unless we have a

really gross bug. So, let us be content with reporting classification incorrect classi-

fications and failures to reach any classification at all. We need two rules for these

reports.

:rule r5
rule block 2 (goal detect incorrect classifications)
IF (in Iris N = <N> AND final = <FL> AND orig = <ORIG> AND final

<> <ORIG>)
THEN

prmem 1,
message "Specimen <N> incorrect\: <FL> should be <ORIG>\n";

:rule r6
rule block 2 (goal detect unclassified specimens)
IF (in Iris N = <N> AND species.setosa = 0 AND species.

versicolor = 0 AND species.virginica = 0)
THEN

message "Specimen <N> unclassified\n";

13.2.5 Setting Our Initial Data

This is a fairly easy task, since all out data are held in one FLOPS data file; iris.dat.

Iris.dat is a FLOPS blackboard data file, readable by FLEDIT, and created from the

original data file downloaded from the Internet by adding one additional field to the
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beginning of each record. That field is “Data”, the name of the data element. (FLOPS

needs this name to know what to do with the data in the rest of the record.)

transfer -conf Data from myiris.dat;
fire all off;
fire block 0 on;

We have used a new command, transfer, that reads FLOPS blackboard data

files from disk or writes them to the disk. The –conf in the transfer command means

that truth values are omitted, and assumed to be maximum. In blackboard files, the

first field in each record is the name of the data structure that holds the description of

the contents of the record. In our case, the data descriptor is Data, with the

declaration

declare Data N int PL flt PW flt SL flt SW flt orig str;

The data record itself has “Data” in the first field to identify the data format, and

then has the rest of the data in the same sequence as the data declaration. Here is the

first record of myiris.dat:

"Data", 1, 5.10, 3.50, 1.40, 0.20, "Iris-setosa"

The input data are crisp, so we use the –conf flag to tell FLOPS that the data in

this file are crisp and do not require truth values; all truth values are 1000.

Our program is now ready to run.

13.2.6 Running iris.par

Since this is a parallel program, all rules concurrently fireable will be concurrently

fired. Since we have 150 instances of data, we will usually have at least 150 rules

fireable at the same time, and “run 1;” will usually run 150 or more rules at once.

To help the user understand the program run better, we have added a sequence of

alternating message and run 1; commands at the end of the program, thus:

message "IRIS.PAR ready to run and classify 150 specimens";
message "Block 0 - creating instances of Iris\n";
run 1;
message "Block 0 - fuzzifying data\n";
run 1;
message "Block 1 - classifying data\n";
run 1;
message "Block 2 - detecting errors\n";
run 1;
message "Iris.par finished";
exit;
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We go ahead and run the program. We see right away that a lot of rules are being

fired. We can cut down the amount of output by commenting out the write commands,

so we do this. While we are at it, we also comment out the prmem command in the rule

that detects incorrect classifications. Our stripped-down output is now:

IRIS.PAR ready to run and classify 150 specimens
Block 0 - creating instances of data
Block 0 - fuzzifying data
Block 1 - classifying data
Block 2 - detecting errors
Specimen 78 incorrect: Iris-virginica should be
Iris-versicolor
Specimen 84 incorrect: Iris-virginica should be
Iris-versicolor
Specimen 53 incorrect: Iris-virginica should be
Iris-versicolor
Specimen 107 incorrect: Iris-versicolor should be
Iris-virginica
Specimen 71 incorrect: Iris-virginica should be
Iris-versicolor
Iris.par finished
Terminating FLOPS: 0 warnings, 0 errors

Our output now makes it clear what steps the program takes to solve the problem.

We also see that for a very simple program with very simple membership functions,

we have not done badly on a problem well known for its difficulty; our first attempt

classified 97% of all specimens correctly.

13.2.7 Improving iris.par

There are several ways of improving the performance of a classification program.

First, we can tune our membership functions. Next, we can improve our resolution

of contradictions, possibly by adding more attributes; in the Iris program, we could

try adding the petal and sepal aspect ratios. We can look for a modified approach to

our classification rules; Abe defined an ellipsoidal membership space, rather than the

rectangular box most workers have used. All three methods have been employed by

other workers attempting to classify the Iris data, but we will be satisfied with having

achieved a respectable preliminary classification rate and will proceed to a real-

world problem. In fact, FLOPS was originally written to solve the next problem!

13.3 ECHOCARDIOGRAM PATTERN RECOGNITION

When attempting to diagnose heart problems, cardiologists frequently examine

ultrasound images of the heart; very fuzzy cross-sectional images, recorded about
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20 times a second. Our cardiologists (busy as most doctors are) wanted to have a

computer look at digitized echocardiograms to determine the volume changes

throughout the heart cycle. We will look here at a somewhat simplified version of

the expert system for classifying regions of the image according to their anatomical

significance (Siler et al., 1987).

In classical image processing of this nature, there are usually three steps: segmen-

tation, feature extraction, and classification. We decided to perform the first two by

conventional procedural language programs. First, we mapped out regions of inter-

est in the heart image. Next, we extracted numerical features of these regions: area,

x- and y-centroid coordinates, and measures of shape (not needed in the final classi-

fication program). Finally, we planned a fuzzy expert system to classify the regions.

FLOPS was originally written as a fuzzy superset of an AI-based non-fuzzy expert

system shell written by Charles Forgy of Carnegie-Mellon University, OPS5

(Brownston et al., 1985).

The segmentation program was based on using a cell-automation algorithm that

worked quite successfully. Region feature extraction, into area; centroid position;

and whether the region touched the border of each region, was a straightforward

task. Now came the FLOPS region classification program.

13.3.1 Echocardiogram Pattern Recognition: Data Declarations

Since we could not be sure what classifications would be needed, we could not use

the technique of iris.par of fuzzifying numeric features into a fuzzy set whose

members were classifications; instead, we used the conventional fSmall, Medium,

Largeg type of discrete fuzzy set representation of our features.

The first data declaration is straightforward, simply the raw data for each region.

:raw data
declare Data

frame int :image frame number
rnum int :region number within frame
area flt :region area, pixels
xbar flt :region x-centroid, pixels from left border
ybar flt :region y-centroid, pixels from top border
border str; :"Y" if region touches border, else "N"

Now we declare the region data used in classification.

:region characteristics
declare Region :global region characteristics

frame int :frame number
rnum int :region number within frame
area fznum :global region features
size fzset :word equivalent of area

(TINY SMALL MEDIUM LARGE HUGE)
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xbar fznum :x-centroid
xpos fzset :word equivalent of xbar

(FAR-LEFT LEFT CENTER RIGHT FAR-RIGHT)
ybar fznum :y-centroid
ypos fzset :word equivalent of ybar

(VERY-HIGH HIGH MIDDLE LOW VERY-LOW)
border str :YES or NO
class fzset :classifications

(
ARTIFACT :artifact
LUNG :lungs
LA :left atrium
LV :left ventricle
LA + LV :merged left atrium and ventricle
RA :right atrium
RV :right ventricle
RA + RV :merged right atrium and ventricle
LA + LV + RA + RV :all four chanbers artifactually

merged
)

final str; :final classification

A few more classifications were actually used, but most are included above.

We also add a declaration, used by a metarule to control rule block firing that

holds the currently enabled rule block:

:rule firing control
declare Enable

block int;

and a data element to sequence output by region numbers:

:printout control
declare Print

rnum int;

To simplify the program, we used the technique first met in auto2.fps of putting

expert knowledge in a database. But this time we will use the database knowledge to

generate the actual rules for classification automatically. Remember that a rule can

have any FLOPS command in its consequent; this includes the rule command itself,

so a rule can generate other rules.

:definitions for creating classification rules
declare Classdef
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goal str size str xp str yp str class str borderop str
border

str;

The data in Classdef are all strings that will be assembled into the actual rules.

13.3.2 Echocardiogram Pattern Recognition: Creating Classification

Rules from a Database

A typical hand-coded classification rule might be

rule r0 (goal Classify region as LV)
IF (in Region size is LARGE AND xpos is RIGHT

AND ypos is MIDDLE AND border = "NO")
THEN class is LV;

We can use this rule to construct a template for classification rules, using variables

for actual attribute values:

rule r1 (goal <G>)
IF (in Region size is <SZ> AND xpos is <X> AND ypos is
<Y> AND border <OP> <B>)
THEN class is <CL>;

The actual values of variables <CL>, <SZ>, <X>, <Y>, <OP>, and <B> are taken

from the entries in our classification rule database. Typical database entries are

shown in Table 13.2.

The data in the first row of Table 13.2 define a rule for classifying a region as

RV (Right Ventricle). When the values are substituted for the variables in the rule

template given in rule r1, we get this rule:

rule (goal Classify region as LV)
IF (in Region size is LARGE AND xpos is RIGHT

TABLE 13.2 Typical Entries in Database for Creating Classification Rules

goal ,G.

Class

,CL.

Size

,SZ.

Xpos

,XP.

Ypos

,YP.

borderop

,OP.

border

,B.

"Classify
region
as LV"

LV LARGE RIGHT MIDDLE “ ¼ ” “NO”

"Classify
region
as RA"

RA SMALL LEFT LOW “ ¼ ” “NO”

"Classify
region as
ARTIFACT"

ARTIFACT TINY “” “” },.} “”
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AND ypos is MIDDLE AND border = "NO")
THEN class is LV;

“borderop” is included in Table 13.2 to take care of classes in which we do not care

whether the region touches the border or not; all we demand is that there be some

entry for border, even a blank.

The main reason for automatically creating rules from a database is to improve

program simplicity and especially maintainability. If we wish to modify the classi-

fication rules, there is no need to rework the program; just modify the database. And

the convenience of editing the database with FLEDIT makes interfacing with non-

programmer personnel much easier. We have not taken this all the way; a small text

file would permit automatically generating the data declarations, making it easy to

add (or subtract) classifications.

There are also data declarations used for run control, discussed in the next

sections.

:rule firing control
declare Enable

block int;

:printout control
declare Print

rnum int;

13.3.3 The Organization of echo.par

Data element Enable just above is often useful for sequencing sequential firing of

blocks of rules. Program echo.par has 10 rule blocks: 0–8 for the actual image pro-

cessing rules, and block 20 for a metarule to control which rules are enabled for

firing and another rule to switch from parallel to serial rule-firing mode when it is

time to print out our answers.

The list of rule blocks and their functions is given in Table 13.3.

13.3.4 Metarules to Control Activation of Rule Blocks

Block firing control here is a very simple matter—we turn off the block number cur-

rently active, increment the block number, and activate the new block. When we

have finished block 7, we will switch to serial mode for firing block 8. After

block 8 is fired, we are all done.

In AI parlance, metarules are rules to control the rule-firing sequence. A metarule

is sometimes quite complex, but in iris.par it is extremely simple—it sequences

firing of rule blocks sequentially. Here is the very simple metarule of block 20:

:rule r23
rule block 20 (goal Enables blocks sequentially)
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IF (in Enable block = <B> AND block < 8)
THEN

write ’Turning off rule block <B>, activating next
block\n’,

fire block <B> off,
in 1 block = (<B> + 1),
fire block (<B> + 1) on;

Rule r23 is perfectly straightforward; we turn the current block (,B.) off, incre-

ment the block number in Enable, and turn the next block on.

:rule r24
rule block 20 (goal Switches to serial mode after block 7
fires)
IF (in Enable block = 7)
THEN

make Print rnum = 1,
message "Switching from parallel to serial mode for
printout\n",
serial;

This rule works in concert with the previous rule when Block 7 has been fired. We

make an instance of the print control data element Print and initialize it, then switch

from parallel rule-firing to serial rule-firing, so we can control the firing of individual

rules conveniently.

Metarules can be very much more complex than this, so program flow can be

directed as the progress of the program and the data dictate.

TABLE 13.3 Rule Block Functions in echo.par

:Block 0 - creates preliminary classification rules,:converts
data to fznums

:Block 1 - fuzzifies data, writes out data converted to fuzzy
numbers

:Block 2 - write out fuzzy sets, get preliminary
classifications

:from block 2 classification rules created by r1
:Block 3 - writes preliminary classifications to screen
:Block 4 - commences resolution of contradictions
:Block 5 - more conflict resolution
:Block 6 - more conflict resolution
:Block 7 - checks that all chambers are present,
:stores final classifications
:Block 8 - writes classifications to screen in serial mode
:Block 20 - block firing control
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13.3.5 New Features of Rules in echo.par

Changing Crisp But Uncertain Input Numbers to Fuzzy Numbers. We have

already covered the most important new rule feature, the creation of new rules

from a database of expert knowledge. Another new feature is the creation of

fuzzy numbers from crisp numbers. Consider this rule:

rule block 0 (goal Moves input data to Region , converts to

fuzzy numbers)

IF (in Data frame = <F> AND rnum = <N> AND area = <A> ð13:2Þ

AND xbar = <X> AND ybar = <Y> border = <B>)

THEN

make Region frame = <F> rnum = <N> area = <A> 10 0:1

xbar = <X> 20 0 ybar = <Y> 20 0 border = <B> ;

The antecedent of this rule assigns variable names to some crisp input numbers.

Of these, the frame and region number are inherently crisp, being known to complete

precision. However, this is not true of the area and centroid coordinates xbar and

ybar; these are quite subject to errors of measurement, and should more properly

be represented by fuzzy numbers. The rule consequent takes care of this. The

instruction make Region . . . area ¼,A.10 0.1 . . . creates an area in an instance

of Region that is a fuzzy number. The new area will be an s-shaped fuzzy

number with absolute uncertainty 10 (þ/2 10 pixels) and a relative uncertainty

of 10% [0:1 �,A. (area) pixels]. Similarly for the centroid measurements; the

crisp xbar and ybar in Data are transformed into fuzzy numbers in Region with

absolute uncertainty 20 pixels and zero relative uncertainty. These fuzzy numbers

have uncertainties that are consistent with the process of feature extraction from

noisy echocardiogram images.

Resolving Contradictions. Of more importance are the rules to resolve contradic-

tory preliminary classifications. We are virtually guaranteed to have contradictions;

the rules for classifying as RV (right ventricle) and as RAþ RV (merged right

atrium and right ventricle have identical antecedents. Here, we cannot use the cava-

lier approach of taking the most likely classification that we used in iris.par. Instead,

we use logic and an additional piece of information; the frame in which the Region

appears.

Suppose that in the same frame we have a region classified both as RAþ RV and

RV. If in the same frame we also have a region classified as RA, then the classifi-

cation as RV is correct and that as RAþ RV is wrong; the RA cannot appear

twice in a single frame. Our rule for this purpose is

rule block 4 (goal Rule out RA+RV if RV and RA+RV and RA)

(13:3)

" "

" "
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IF (in Region frame = <FR> AND rnum = <N1> AND class is
RV AND class is RA + RV)
(in Region frame = <FR> AND rnum = <N2> AND rnum <>

<N1> AND class is RA)
THEN

reset ,
write ’Frame <FR> Region <N1> - Ruling out RA + RV in

favor of RV and RA\n’,
in 1 class.RA + RV = 0 ;

In the consequent, we use the reset command to make sure that our actions will

override any previously assigned truth values. We then override the default mono-

tonic reasoning of FLOPS by directly assigning a truth value of zero to member

RAþ RV in fuzzy set class. We do this by the symbolism class.RAþ RV to rep-

resent the grade of membership of member RAþ RV, and set it to zero. Suppose

we had written

THEN
reset 0,
in 1 class is RA + RV;

The reset command will set pconf to zero, but the command class is
RA + RV; is subject to monotonic reasoning restrictions, and if the existing truth

value in RAþ RV is greater than 0 (as will certainly be the case), setting its truth

value to a lesser value will be rejected by the system. However, the consequent

command

in 1 class.RA + RV = 0 ;

will be unconditionally obeyed.

As a final check on classifications so far, we make sure that we have accounted

for all heart regions in each frame before reporting our final classifications. One of

these rules is

rule block 7 (goal Checks for LA, LV, RA, RV in same frame) (13:4)

IF (in Region frame¼<FR> AND class is LA)

(in Region frame¼<FR> AND class is LV)

(in Region frame¼<FR> AND class is RA)

(in Region frame¼<FR> AND class is RV)

THEN
reset ,
write ’LA, LV, RA, RV present in frame <FR>\n’ ,
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in 1 final = "LA" ,
in 2 final = "LV" ,
in 3 final = "RA" ,
in 4 final = "RV" ;

13.3.6 Running echo.par

Echo.par is already set up to do a sequence of run 1; commands, pausing for a message

between blocks. To be able to execute debug commands after each run 1; it is only

necessary to click the “Cancel” button on a dialog box; this will return us temporarily

to command mode, and we can execute such debugging commands as ldata and

prstack, returning to run mode by the resume command. By now the reader should

have enough experience with debug commands to get along without detailed guidance.

13.4 SCHIZO.PAR

This program was originally written by graduate student Jeff Jones at the University

of Texas at Arlington, with guidance from a University psychologist. It was tested

and used by a psychologist at the University of Alabama at Birmingham for several

years, and worked out very well in practice. Its purpose is to do a preliminary

psychological screen for subjects who might be in need of a professional psycho-

logist, and was designed to be run by a technician. The technician is asked to

what extent 30 behavioral manifestations are characteristic of a subject, with

grades from 0 to 1000. The program rules then analyze these 30 scores to determine

grades of membership in a fuzzy set of diagnoses: major depression, bi-polar dis-

order, paranoia, and several types of schizophrenia. These preliminary diagnoses

are used by the psychologist to help determine if treatment is needed, and to help

formulate treatment if needed.

13.4.1 Data Declarations in schizo.par

We have three data structures used in the schizo.par diagnosis process, and one for

block firing control.

The first is Fact, a very simple structure to hold the behavioral traits being graded.

The score for each behavior becomes the truth value of the corresponding fact. The

strings for instances of fact are held in a tiny FLOPS file.

declare Fact
fact str ;

The next structure, Symptoms, uses the scored facts to assign truth values to a

fuzzy set of generalized symptoms; depressive, manic, and schizophrenic.

declare Symptoms
symptom fzset
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(
has_depressive_symptoms
has_manic_symptoms
has_schizophrenic_symptoms
);

Finally, the facts and generalized symptoms are used to secure preliminary diag-

noses. Since these are preliminary diagnoses in a complex field, we make no attempt

to arrive at a single diagnosis; final diagnosis (or diagnoses) is left up to the phys-

ician or clinical psychologist.

declare Diagnosis
dx fzset
(
major_depression
manic_depressive_psychosis
schizophrenia
schizophrenia_disorganized_type
schizophrenia_catatonic_type
schizophrenia_paranoid_type
paranoid_disorder
) ;

The final declaration is similar to that in echo.par, and serves the same purpose;

controlling firing of rule blocks.

declare enable
block int;

13.4.2 Structure of schizo.par

We have already indicated the general structure of shizo.par. Now we will look at

this structure in more detail. We have six rule blocks, whose functions are given

in Table 13.4.

TABLE 13.4 Rule Blocks in schizo.par and Their Functions

Block Function

Number of

Rules

0 Gets truth values in the facts (the behavioral traits) 1

1 Gets generalized symptoms from facts 12

2 Gets first diagnoses from symptoms and facts 7

3 Updates diagnoses 3

4 Outputs final diagnoses 1

5 Enables and disables rule blocks 1
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13.4.3 Rules for schizo.par; Block 0, Inputting Data

The decision to handle the data input as a set of facts (the behavioral traits) whose

truth values represent the degree to which each behavioral trait is characteristic of a

subject is quite workable. The facts themselves will already be in memory, since we

will insert, at the end of the rules, the command

transfer -conf Fact from facts.dat;

Since the facts all have initially full truth value, we can use the –conf option in

the transfer command to dispense with putting truth values in the data file. Typical

facts are

"Fact", "has sad face"
"Fact", "has depressed mood"
"Fact", "loses interest in usual activities"
"Fact", "has euphoria"
"Fact", "is overactive"

Our rule to permit the technician to input the truth values that he will assign to

each trait is simple and straightforward:

:rule r0
rule (goal Gets truth value levels in facts)
IF (in Fact fact <FA> )
THEN

input "<FA> (0 - 1000) ? " 1 fact.cf ;

where, of course, <FA> is replaced by the current fact, such as

loses interest in usual activities ? (0 - 1000)

13.4.4 Rules for schizo.par; Block 1, Getting Truth Values of

Generalized Symptoms

The diagnosis rules for schizo are not obvious; they depend on having a cooperative

and dedicated expert available, as Jeff Jones had.

The next block has the rules for translating some of the facts into general

symptom classes; depressive, manic, and schizophrenic. Even a non-psychologist

can understand some of these rules, for example,

:rule r1
rule rconf 400 block 1 (goal Finds symptom is
has_depressive_symptoms)
IF (in Fact fact is "has sad face")

(in Fact fact is "has depressed mood")
(Symptoms)
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THEN
write ’has depressive symptoms ’, pconf ,
in 3 symptom is has_depressive_symptoms ;

We are not altogether sure that this rule is valid; the rconf value of 400 means that

this rule can assign a truth value of has_depressive_symptoms of no more than 400.

(A number of rules have less than full truth value.)

The write command uses a system-furnished symbol pconf whose value is the

truth value with which the consequent command is executed, so that the output

tells how sure this rule is that the symptom is valid. There is likely to be more

than one rule attempting to assign truth values to the symptoms, so FLOPS mono-

tonic logic will let the highest truth value succeed.

13.4.5 Rules for schizo.par; Block 2, Getting Basic Diagnoses

Here we are making the first pass at diagnoses for our subject. These rules attempt to

derive only the basic diagnoses: major depression, manic-depressive psychosis,

schizophrenia, and paranoid disorder. The rules use a combination of facts and

symptoms, as in this rule for diagnosing major depression:

:rule r14
rule rconf 800 block 2

(goal Finds diagnosis is major_depression)
IF (in Symptoms symptom is has_depressive_symptoms)

(in Fact fact "symptoms have lasted for at least one month")
(Diagnosis)

THEN
write ’diagnosis major depression ’, pconf,
in 3 dx is major_depression ;

13.4.6 Rules for schizo.par; Block 3, Getting Final Diagnoses

The basic diagnoses have been established; now we can look into differential diagno-

sis among different types of schizophrenia. Our rules for getting truth values of symp-

toms used the truth values of the facts; the rules for basic diagnoses used truth values

of facts and symptoms; and now we can use the truth values of the basic diagnoses in

addition to facts and symptoms final diagnoses. Here is one such rule:

:rule r20
rule rconf 800 block 3

(goal Updates diagnosis to schizophrenia_disorganized_
type)
IF (in Diagnosis dx is schizophrenia)

(in Fact fact is "has incoherent thought and speech" )
(in Fact fact is "has markedly illogical thoughts" )

238 SOLVING “WHAT?” PROBLEMS WHEN THE ANSWER IS EXPRESSED IN WORDS

TEAM LinG - Live, Informative, Non-cost and Genuine !



(in Fact fact is "has inappropriate affect" )
THEN

write ’diagnosis disorganized schizophrenia ’, pconf ,
in 1 dx is schizophrenia_disorganized_type ;

13.4.7 Rules for schizo.par; Block 4, Output of Diagnoses

The authors have frequently heard that fuzzy systems should possess crisp outputs.

Often people in engineering and the hard sciences have trouble dealing with

fuzzy outputs. But this is much less likely to be true of workers in the medical

and biological fields; they live with uncertainty all the time, and are more likely

to try to reduce the uncertainty rather than to get rid of it altogether. Certainly in

the psychological field, it is not uncommon to find patients who suffer from more

than one ailment at the same time. In any event, a physician appreciates having

possibilities presented with relative likelihoods rather than a single definite com-

puter-generated answer. Consequently, we present as output the entire range of

possible illnesses together with their likelihoods. Any attempt to view the presence

of more than one concurrent diagnosis as a contradiction rather than as an ambiguity

would be a bad error. This makes our output rule very simple:

:rule r23
rule block 4

(goal Writes fuzzy set of final diagnoses with truth
values)
IF ( Diagnosis )
THEN

message "final diagnoses -\n" ,
prmem 1 ;

A quite reasonable output might be

final diagnosis -
(Diagnosis (

(’tt’,71)
(’dx’,((’major_depression’,400) (’paranoid_disorder’,
200)))))

Of course, this output could be prettied up, but that is another matter.

13.4.8 Rules for schizo.par; Block 5, Block Firing Control

Block firing control in this program is really trivial—we simply have to execute

blocks 0–4 in sucession. Our last rule does this:

:rule r24
rule block 5 (goal Controls block firing sequence)
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IF (in enable block <N> block < 6)
THEN

in 1 block ( <N> + 1 ) ,
fire block <N> del ,
fire block ( <N> + 1 ) on ;

The consequent command fire block <N> del does not only turn block

,N. off; the del keyword tells FLOPS that we are completely finished with

this rule block, and not to test its rules for fireability throughout the rest of the run.

13.4.9 Running schizo.par with Debugging Commands

Certainly, the easiest way to run schizo.par with debugging commands is to

comment out the run; command at the end of the program and to proceed comple-

tely manually by entering the desired FLOPS commands at the FLOPS command

prompt .. as we have done before. Check out all the debugging commands in

the online manual help file, and try out as many of them as seem appropriate.

13.5 DISCUSSION

We have programmed three problems of the “What?” type, none trivial, and all

arising from real-world problems. Iris.par for speciating iris plants used 7 rules;

echo.par and schizo.par used 25 programmer-written rules each, although

echo.par automatically generated another dozen or so rules from its expert knowl-

edge database. We think this demonstrates that a well-written fuzzy expert system

can solve well-defined nontrivial tasks with a relatively few number of rules.

Of course, in these programs we are not trying to solve difficult intellectual tasks

like theorem proving. (As a matter of fact, few humans can prove theorems!) But

when we add the ability to learn, we are really well on our way to emulating

human thought.

All these programs input data, and if the data are numeric we put it in word form

as soon as possible. All our data words will have truth values attached, whether com-

puted or assigned subjectively by humans. We are very quickly led to ambiguities,

which we treasure; good ambiguities lead to robustness of our program. If it is

necessary to give a crisp output, we use resolution of contradictions with as much

smartness as we can muster, either looking at existing data more critically or acquir-

ing new data. But it is not always advisable to give crisp answers, particularly if we

have not embodied sufficient knowledge and skills into our program, and very

seldom with medical diagnoses. If a program can significantly narrow down the

range of uncertainty, it has done a good job.

13.6 QUESTIONS

13.1 What fuzzy operation is almost always carried out in problems where the

answer is a number, but seldom carried out if the answer is a word?
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13.2 Is fuzzification frequently carried out when the answer is a number, or when

the answer is a word, or both?

13.3 The members of a discrete fuzzy set are usually words. When is such a set a

linguistic variable, and when is it not?

13.4 What is a good data type for output when the answer is in words?

13.5 What is the difference between an ambiguity and a contradiction?

13.6 What are the major steps in arriving at a conclusion expressed in words?

13.7 As a program proceeds from earlier-to-later reasoning steps, what should be

done about resolving ambiguities? About resolving contradictions?
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14 Programs that Can Learn
from Experience

14.1 GENERAL METHODS

As we mentioned in Chapter 1, The Random House unabridged dictionary gives a

definition of learning as “the act or process of acquiring knowledge or skill”. In

this chapter, we will see how expert systems can learn in two very simple ways.

The first way will add new facts to the programs knowledge base; the second way

will add new rules. The field of machine learning has received much attention for

many years; see for example, Mitchell (1997) and Kecman (2001). We will restrict

ourselves in this chapter to two basic and fundamentally different ways in which a

rule-based system can learn. In one technique, we write our rules to interpret a data-

base, and add facts to the database as the program learns from experience; in the

other technique the program creates new rules from its experience.

The programs to illustrate these two techniques are different ways of solving the

same problem: pavlov1.par and pavlov2.par, which emulate learning by Pavlovian

classical conditioning. Pavlov1 learns by adding rules to deal with important exter-

nal stimuli; Pavlov2 learns by adding stimulus data to a database. Each technique

has its own programming advantages and disadvantages. The learning techniques

are so simple that they might seem trivial, but the importance of Pavlovian learning

is exceedingly well known. The combination of simplicity and power is sometimes

called elegance, and these simple and elegant techniques have a lot of power.

The idea of Pavlovian learning, often called classical conditioning and more

recently behavior modification, came originally from Pavlov’s experiment on

ringing a bell, then offering food to a dog. The dog soon learned to associate the

sound of the bell with food, so that as soon as the bell was rung he began to salivate.

The great American psychologist Skinner generalized this to nearly all animal

species from worms to humans, and learning theorists have intensively examined

the connection between conditioning and learning. Most would agree that condition-

ing is a simple and basic form of learning.

The two FLOPS programs for learning from experience resemble each other quite

a bit. The reason is because the conditions under which one learns are identical in

both cases. We have a body of stimuli to which we have already associated a

response, at birth wired-in and mostly learned after birth, called unconditioned

243

Fuzzy Expert Systems and Fuzzy Reasoning, By William Siler and James J. Buckley
ISBN 0-471-38859-9 Copyright # 2005 John Wiley & Sons, Inc.

TEAM LinG - Live, Informative, Non-cost and Genuine !



stimuli. We normally encounter a wide variety of apparently neutral stimuli. If a

stimulus with established response occurs very quickly after a neutral stimulus,

and this response sequence is repeated soon and often enough, we will learn to

associate the neutral stimulus with the stimulus whose response is known, and

will exhibit the response after the neutral stimulus without waiting for the other

stimulus to occur. Thus Pavlov’s dog learned to salivate after hearing the bell and

before food was offered.

It requires some programming to establish these sequences. Our program then has

two sorts of tasks: keeping track of stimuli and their relation to each other; and

keeping track of time and memory. We provide for immediate experience; transfer

of stimuli to short-term memory, and transfer of stimulus associations to long-term

memory. We must establish time limits on how quickly the unconditioned stimulus

must occur after the neutral stimulus, and how long we remember stimuli, and define

the circumstances under which learning will occur. This programming tends to be

about the same for both programs. They differ mainly on whether the learning is

implemented as a new skill (adding rules) or as new facts to be remembered

(adding data). It is interesting that two programs whose behavior is virtually identi-

cal emulate entirely different neurological implementations.

14.2 PAVLOV1.PAR: LEARNING BY ADDING RULES

14.2.1 Data for Pavlov1.par

We have a very limited response repertoire in the Pavlov programs: “Run!” for bad

stimuli, such as “burn”, and “Whee!” for good stimuli, such as “food”. We will need

two main types of data elements: some to deal stimulil, and some to do with time;

some will deal with both.

Our initial biologically determined stimulus–response data can be stored in

Wired-in:

declare Wired-in :library of unconditioned stimuli
and response types

id str :stimulus id
response str; :stimulus response

A place to store a new stimulus, with its response (if known) and the time when it

was received:

declare NewStimulus :record of new stimuli
id str :stimulus ID
time int :time when stimulus received
response str ; :NULL (neutral), WHEE (positive),

RUN (aversive)
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We store recent stimuli in short-term memory as Stimulus:

declare Stimulus :record of stimuli
id str :stimulus ID
time int :time received
response str; :NULL (neutral), WHEE (positive),

or RUN (aversive)

Now we need a data element to store stimulus pairs, that is, received in fairly rapid

succession:

declare Pair :observed stimulus pair
id1 str :earlier stimulus (response " ")
id2 str :later stimulus (response + or -)
T1 int :time of stimulus id1
T2 int :time of stimulus id2
TF int; :forget pair after this time

For time management, we need a clock (biological or otherwise) to know when a

stimulus was received. We also tuck into this data element parameters regarding

remembrance of stimuli;

declare Time :Internal clock
time int :current time
pairTime int :pair with stimulus no earlier than

this time
forget int; :forget anything earlier than this

time

and a data element to keep track of how when two stimuli have been paired:

declare Count :
id1 str
id2 str
N int
time int;

In Forget, we store some memory management parameters:

declare Forget
delPT int :time interval allowed to pair

incoming stimuli
delFT int; :time interval before stimulus &

pairs forgotten
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We have a feeling that although this program works, time could be handled more

compactly than it is.

Final housekeeping data elements:

declare Rulemade
id1 str
id2 str;

and our familiar place to store which rule block is currently fireable:

declare Fire :block firing control
block int;

14.2.2 Rules for Pavlov1.par

We organize the program itself by block numbers, something like this:

0. Let the user input the next stimulus into a NewStimulus data element.

1. Quit on null input, or put the time into into the NewStimulus data element.

2. Associate the new stimulus with a wired-in response if appropriate.

3. Report the response if known. If not, fire any rules that associate the stimulus

with a response. Here is where our created rules to associate stimulus with

response will go. Forget any stimuli too old to be remembered.

4. If we can, pair new stimulus with wired-in response to recent neutral stimulus.

Move new stimulus to short term memory (will be soon forgotten).

5. If the latest stimulus has a wired-in response and is paired with more than one

recent neutral stimulus, keep most recent pairing and forget the older.

6. Count recent stimulus pairs

7. If the stimulus pair data indicate that a new rule should be made to associate

them, don’t make a new rule if one already exists.

8. Generate new stimulus-association rule if ready to do so.

9. Rule firing control: activate next block (block ,8) or return to block 0.

As we can see, the most important block is Block 8, which actually creates the

new rule from the data at hand. While we have seen automatic rule creation

before in echo.par, there was no learning there; the rules were constructed from a

preexisting database of expert knowledge. In Pavlov1.par, no one can predict in

advance what rules (if any) will be created during a program run; that depends

entirely on the user’s experiences during a program run.

The critical rule is

:rule r14
rule block 8 (goal Generates rule for response to
conditioned stimuli)

246 PROGRAMS THAT CAN LEARN FROM EXPERIENCE

TEAM LinG - Live, Informative, Non-cost and Genuine !



IF (in Count id1 = <ID1> AND id2 = <ID2> AND N > 2 )
(in Wired-in id = <ID1> AND response = <R> )

THEN
message ‘New rule - conditioning <ID1> to <ID2>
response <R>\n’,
delete 1,
make Rulemade id1 = "<ID1>" id2 = "<ID2>",

The new rule itself, created by r14, might be

rule r20 rconf 1000 ON block 3 ON
IF

( in NewStimulus id = "bell" )
THEN

message ’bell - LOOK OUT - food coming\, DROOL!\n’;

The conditions under which the rule is fired is that stimulus id1 has been associ-

ated with stimulus id2 on at least two previous occasions, sufficiently recently,

and that stimulus id1 is associated with a wired-in response. If this is true, then

element Count (which kept track of id1-id2 pairings up to now) is deleted as

no longer needed, we make an instance of Rulemade so that we will not make

any more instances of this rule, and create the rule itself, stored in Block 2.

The sequence of operations is

0. Let the user input the next stimulus into a NewStimulus data element and

increment time.

1. Quit on null input, or put the time into into the NewStimulus data element.

2. Associate the new stimulus with a wired-in response if appropriate. Store new

rules here.

3. Report the response if known. If not, fire any rules which associate the

stimulus with a response. Here is where our created rules to associate stimulus

with response will go. Forget any stimuli too old to be remembered.

4. If we can, pair new stimulus with wired-in response to recent neutral stimulus.

Move new stimulus to short term memory (will be soon forgotten).

5. If the latest stimulus has a wired-in response and is paired with more than one

recent neutral stimulus, keep most recent pairing and forget the older.

6. Count recent stimulus pairs

7. If the stimulus pair data indicate that a new rule should be made to associate

them, do not make a new rule if one already exists.

8. Generate new stimulus-association rule if ready to do so.

9. Rule firing control: activate next block (block ,8) or return to block 0.
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We implement this sequence in this way:

:rule r0 block 0 Inputs stimulus and updates time
:Block 1 - Puts input into new stimulus record or quits
on null stimulus

:rule r1 - Quits on null stimulus
:rule r2 - Puts time and null response into new stimulus

record
:Block 2 - associates new stimulus with wired-in
response if appropriate

:rule r3 - Associates new stimulus with wired-in
response if possible

:conditioned response rules go here
:Block 3 - reports response, forgets old data,

:rule r4 - Reports response to unconditioned stimulus
:rule r5 - Forgets old stimuli
:rule r6 - Forgets old stimulus pairs
:rule r7 - Forgets Count of how many old Pairs we have had

:Block 4 - stimulus with known response paired with previous
neutral

:stimulus, moves NewStimulus into short-term memory
:rule r8 - If response known, pairs with previous

neutral stimuli
:rule r9 - Moves NewStimulus into short-term memory

:Block 5 - if latest stimulus paired with more than one
neutral stimulus,

:select latest one
:rule r10 - Picks latest neutral stimulus paired with

current one
:rule r11 - Picks latest instance of count)

:Block 6 - counts recent stimulus pairs
:rule r12 - Counts number of recent stimulus pairs

:Block 7 - stops making new rule if one already exists
:rule r13 - Stops making new rule if one already made

:Block 8 - generates new rule if ready
:rule r14 - Generates rule for response to conditioned

stimuli
:rule r15 - Deletes instance of count - no longer needed)

:Block 10 - sequences rule blocks
:rule r16 - Sequences rule blocks for firing
:rule r17 - Restarts rule firing sequence after stimulus

processed
:rule r18 - Turns off block 3 if new rule created)
:rule r19 - Fires once to report stimuli with wired-in

responses
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Run control is very simple; run through the blocks from beginning to end, then

restart at the beginning again. The only complication is the necessity of turning

off the new block 3 rule when it is created. (FLOPS turns on a rule and its block

when the rule is created.)

14.2.3 Exercise: Pavlov1.par

A straight-through run of Pavlov1 can produce this output. (User input is bold face.)

Compiling program PAVLOV.FPS...
Simulation of pavlovian conditioning.

A stimulus, with no response associated, coming just before a second stimulus

with known response, tends to associate the known response to the first stimulus.

Known stimuli with wired-in responses -
Stimulus burn response RUN
Stimulus food response WHEE
Stimulus girls response WHEE

There are two basically different approaches to this problem. One way is to gen-

erate a new rule if a new stimulus becomes associated with a previous stimulus with

known response: that is what this program does. We could instead modify the data-

base on which the rules operate.

Try seeing if the burnt child dreads the fire. For example, enter fire followed by

burn three or four times in a row, and see what happens. You can of course enter

stimuli not in the library.

PAVLOV.PAR Ready to run
>>run;
Enter any stimulus, <CR> to quit
fire
Enter any stimulus, <CR> to quit
burn
burn - RUN!
Enter any stimulus, <CR> to quit
fire
Enter any stimulus, <CR> to quit
burn
burn - RUN!
Enter any stimulus, <CR> to quit
fire
Enter any stimulus, <CR> to quit
burn
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burn - RUN!
New rule: conditioning burn to fire response RUN
Enter any stimulus, <CR> to quit
fire
fire - LOOK OUT - burn coming, RUN!
Enter any stimulus, <CR> to quit
(<CR>)
Exiting PAVLOV --
Terminating FLOPS: 0 warnings, 0 errors

Suppose we would like to run the program without stopping until we are ready to

create a new rule. We comment out the run command at the end of the program, and

use TFLOPS to open schizo.par. We run schizo.par. FLOPS compiles the program,

reads its data from the blackboard, and at the end of the program prints out the

FLOPS prompt >>. Now we enter

>>breakpoint r14;
>>run;

and FLOPS runs happily until it is ready to make a new rule, then reverts temporarily

to command mode. At that point we can inspect data, fireable rule stack, and execute

whatever other debugging commands we wish. When finished, we enter return;,

and the program continues from where it stopped.

With judicious use of breakpoints; prstack; prmem, ldata and prdata; lrule and

prule, you can get deeper insights into how pavlov1.par functions.

14.3 PAVLOV2.PAR: LEARNING BY ADDING FACTS TO

LONG-TERM MEMORY

The overall structure of Pavlov2 is almost the same as Pavlov1. Following our

discussion of Pavlov1.par, we begin with differences in the data declarations; next

we will look at differences in rule structure.

14.3.1 Data for Pavlov1.par

First, we list the data elements declared in both programs.

. Stimulus—short-term memory for recent stimuli.

. NewStimulus—stores latest stimulus received.

. Pair—short-term memory of stimulus pairs received in fairly rapid succession.

The earliest stimulus is neutral (not wired-in or conditioned response), and the

latest is a wired-in stimulus–response pair.

. Wired-in—long-term memory of wired-in stimulus response pairs, like

“food—whee”.
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. Time—record of current time, earliest time to pair stimuli, and latest time to

forget stimuli.

. Count—record of recent stimulus pairs.

. Forget—time before forgetting received stimuli and max time before stimulus–

stimulus pairs are forgotten.

. Fire—record of currently activated rule block. While both programs have a data

element Fire to keep a record of currently activated rule block, but Fire in

Pavlov1 has an extra attribute NewRule to inform the fire control rule that a

new rule has been made and the new rule should be turned off.

Pavlov1 has a data element RuleMade to avoid making duplicate new rules. The

corresponding task in Pavlov2, avoiding making duplicate entries in Conditioned, is

easily accomplished by a single rule that scans instances of Conditioned to see if a

candidate entry has already been made. Element RuleMade is not required in

Pavlov2.

14.3.2 Rules for Pavlov2.par

Comparison of the rule block functions in Pavlov1.par and Pavlov2.par shown in

Table 14.1 shows immediately that there is very little difference between the two

programs; of the 10 program blocks, only three (blocks 3, 7, and 8) show any

differences.

TABLE 14.1 Rule Block Functions in Pavlov1.par and Pavlov2.par

Rule Block Pavlov1.par Pavlov2.par

Block 0 stimulus input stimulus input

Block 1 Quit or put time into new stimulus

record

Quit or put time into new stimulus

record

Block 2 associate new stimulus with

wired-in response if appropriate

associate new stimulus with

wired-in response if appropriate

Block 3 reports response, forgets old data,

holds generated

stimulus-response rules

reports response, forgets old data

Block 4 stimulus with known response

paired with previous neutral

stimulus, moves NewStimulus

into short-term memory

stimulus with known response

paired with previous neutral

stimulus, moves NewStimulus

into short-term memory

Block 5 if latest stimulus paired with more

than one neutral stimulus, select

latest one

if latest stimulus paired with more

than one neutral stimulus, select

latest one

Block 6 counts recent stimulus pairs counts recent stimulus pairs

Block 7 prevents making new rule if one

already exists

prevents making new library data if

one already exists

Block 8 generates new rule if ready generates new library entry if ready

Block 10 sequences rule blocks sequences rule blocks
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Block 3 differs between the two programs in that the Pavlov1 block holds the

learned rules to associate conditioned stimuli with wired-in stimulus and response.

However, the same block in Pavlov2 holds a single rule to associate a conditioned

stimulus with its learned response, using the learned data. Block 3 in both the

Pavlov1 and Pavlov2 perform the same function of associating a conditioned

response with the wired-in stimulus to which it was conditioned.

Similarly, Block 7 in both Pavlov1 and Pavlov2 perform the function of avoiding

crowding memory with duplicate information. In Pavlov1, Block 7 avoids making

duplicate rules; in Pavlov2, Block 7 avoids making duplicate entries long-term

memory.

14.3.3 Running: Pavlov2.par

Running Pavlov1.par and Pavlov2.par produces almost identical results, except for a

message telling the user that a new rule or new datum is being created. We list outputs

in Table 14.2 for both programs. The introductory messages are skipped, since they

are identical for both programs. (Data entered by the user are listed in bold type.)

Pavlov2 has a big advantage over Pavlov1: the learned responses can be stored

without modification of the program itself. The skills embodied in Palov1 are

TABLE 14.2 Comparing Runs of Pavlov1.par and Pavlov2.par

Pavlov1.par Pavlov2.par

Enter any stimulus, <CR> to quit Enter any stimulus, <CR> to quit

fire fire

Enter any stimulus, <CR> to quit Enter any stimulus, <CR> to quit

burn burn

burn – OUCH! burn – OUCH!

Enter any stimulus, <CR> to quit Enter any stimulus, <CR> to quit

fire fire

Enter any stimulus, <CR> to quit Enter any stimulus, <CR> to quit

burn burn

burn – OUCH! burn – OUCH!

Enter any stimulus, <CR> to quit Enter any stimulus, <CR> to quit

fire fire

Enter any stimulus, <CR> to quit Enter any stimulus, <CR> to quit

burn burn

burn – OUCH! burn – OUCH!

New rule: conditioning fire to burn

response OUCH

New data – conditioning fire to burn

response OUCH

Enter any stimulus, <CR> to quit Enter any stimulus, <CR> to quit

fire fire

fire – LOOK OUT – burn coming, OUCH! fire – LOOK OUT – burn coming, OUCH!

Enter any stimulus, <CR> to quit Enter any stimulus, <CR> to quit

<CR> <CR>

Exiting PAVLOV – – Exiting PAVLOV – –

252 PROGRAMS THAT CAN LEARN FROM EXPERIENCE

TEAM LinG - Live, Informative, Non-cost and Genuine !



very specific, relating each new stimulus to the appropriate response individually.

Pavlov2 has a different and more powerful skill; it knows how to interpret the

knowledge it has stored, and how to add to that stored knowledge. Is it possible

to conduct a learning experiment to see which of these techniques we animals

use? Possibly. Certainly, if the question “What stimuli produce a flight response?”

is asked, there is less processing if the Pavlov2 method is used than if the Pavlov1

method is used. We leave experimental tests to the cognitive psychologists.

14.4 DEFINING NEW DATA ELEMENTS AND

NEW: RULEGEN.FPS

Sometimes the definition of new rules as given above is not sufficiently flexible,

since it requires that data elements involved be predefined. Actually, FLOPS pro-

vides more flexibility than the PAVLOV programs would seem to provide.

Program RULEGEN.FPS illustrates not only deriving new rules, but also adding

a new data element descriptor.

RULEGEN first defines a prototype data element:

declare Proto
element str
attr str
type str ;

To simplify the program, the attributes in Proto are entered from the keyboard

rather than having their values set by a running program. This is done by rule r0.

Initially, only rule r0 is fireable. After r0 has fired, we know the name of the new

data element, the attribute and attribute type; now rules r1 and r2 are fireable.

These data are now stored in Proto:
Next, rule r1 fires. R1s consequent declares the data element whose character-

istics we have inut in r0. r1 does not create our new rule directly; instead, it

creates a rule-generating rule that can create our new rule by establishing its format.

Rule r2 fires next, and makes an instance of the data element declared by r1. R2

must fie after r1, since a rule does not know about data that existed prior to the rule’s

creation.

R3 is now ready to fire, input the data for the new data element and generating our

new rule for which r1 created the template.

At this point, we have generated a new data element, created a new rule with that

new element in its consequent, created an instance of the new data element, and are

ready to go: Our new rule is now fireable.

Finally, we fire out new rule r4 that simply prints out the rules and data to date.

14.4.1 Running: RULEGEN.FPS

This exercise is straightforward, but the output is not easily digested.

14.4 DEFINING NEW DATA ELEMENTS AND NEW: RULEGEN.FPS 253

TEAM LinG - Live, Informative, Non-cost and Genuine !



Open TFLOPS, then open RULEGEN.FPS in the examples folder. Comment out

everything after “make Proto;” by inserting preceding colons “:”. Now run the

program by repeating this command sequence, entered from the keyboard:

>>prdata;
<output>

>>lrule;
<output>

>>prstack;
<output>

>>run 1;
<output>

(repeat until program finished.)

The problem here is to grasp the sequence of rule-firing steps, what has taken place

in each step, and why the rule-firing sequence is necessary.

14.5 MOST GENERAL WAY OF CREATING NEW RULES

AND DATA DESCRIPTORS

While the rule- and data descriptor generating method in RULEGEN.FPS is superior

to that used in the PAVLOV programs, it is still restricted to maximum number of

attributes specified in the Proto data descriptor. A completely general way of gener-

ating new data elements and rules depends on the use of the FLOPS system-

furnished variable <string>. A string can be initialized by the command

string = "..."

and assembled by concatenating substrings using the command

string + "..."

where "..." is whatever text you desire. In this way, one can assemble any

desired FLOPS command with complete freedom and maximum flexibility. An

extremely simple example is given by program StringRule.fps in the TFLOPS

examples folder.

14.6 DISCUSSION

The two programs, Pavlov1.par and Pavlov2.par, represent two very different basic

models of how we learn. The fact that their performance is identical illustrates the

difficulty of trying to learn how the brain works by constructing computer models

divorced from neurophysiological data. Nevertheless, while we have learned little
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about how the brain actually works in simple learning, we do have two different

techniques for emulating learning that could be quite useful in practice.

It is easy to criticize such simple programs on the grounds of their simplicity.

This is quite an error; the important thing about these simple programs is the

power of the methods employed. To get an idea of this power, let us examine

how these programs could be made more realistic. Note that both programs

are based on Aristotelian True/False logic; we have not taken any advantage of

the fuzzy capabilities of FLOPS.

An obvious extension is to include a measurement of intensity with each new

stimulus; for example, this intensity could be used to affect how long a stimulus

is remembered, and how long before a new rule or datum is created to implement

a new stimulus association. We could also include a measurement of intensity

with the response associated with wired-in responses, to be used in selecting the

course of action that follows a particular response.

While Pavlov2.par performs equally well as Pavlov1.par, the method of writing

one rule to interpret a library of stored data is somewhat more limited than the

method of creating new rules. New data element declarations can also be created,

and new rules can be more powerful than new data. When new data are added as a

result of experience, as in Pavlov1, we can only couple new stimuli to old responses.

This is learning of the simplest possible sort, that can be done by many lower animals,

even worms. The construction of new rules, coupled with addition of new data and the

ability to construct both rules and data declarations from information received during

the course of a program run, offers advanced learning possibilities.

14.7 QUESTIONS

14.1 What are the two basic things that humans can learn?

14.2 What are the two basic ways in which programs can learn?

14.3 What is the simplest way to form new rules?

14.4 Give an example of a new rule formed as in Question 14.3.

14.5 What FLOPS commands relevant to learning can be executed in the conse-

quent of a rule?

14.6 What kinds of rules are needed if expert knowledge is stored in a database

rather than in rules? Which of the example programs use such rules?

14.7 We have said that programs can learn from experience either by adding new

rules or by adding to a database of expert factual knowledge. If either of these

methods could be employed in a particular problem, which method is to be

preferred? Why?

14.8 Suppose that the rule or datum we have learned does not fit into a predefined

format. What technique can we use to create completely arbitrary rules or data?
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15 Running On-Line in Real-Time

15.1 OVERVIEW OF ON-LINE REAL-TIME WORK

There are several different scenarios in which a real-time on-line expert system may

be desirable. Of course, there are the many fuzzy control systems; their huge success

first put fuzzy systems theory on the map. Other real-time systems may involve

watching the data as they come in and waiting for a significant event to happen or

significant condition to occur. This may involve asking for human intervention, as

in alarm systems, or activation of another computer program to deal with the

situation.

In any event, there are certain tasks that must almost always be performed. The

input data must be acquired from one or more of a variety of input devices; the data

must be processed in a timely fashion; and output must be delivered to the real

world. The programmer must know how the processing program can be tested

and debugged. Program planning then begins with the input data to be acquired. Pro-

cessing algorithms must be defined. Processing speed must be estimated to see if

speed requirements can be met. Finally, the way in which output data will be pre-

sented to the outside world must be decided.

Fuzzy control systems nearly always run on-line in real-time. If they are rela-

tively simple, compared to more general-purpose data-driven fuzzy reasoning

systems, they may be able to do this with few difficulties. Data-driven expert pro-

duction systems are much more flexible and powerful than fuzzy control systems,

but tend to run more slowly. Examples of noncontrol on-line real-time applications

include alarm detection systems and fault detection and diagnosis programs. But

now that personal computers are very much faster than in the past, this speed disad-

vantage is of less importance. Another disadvantage of production systems for real-

time on-line work has been that most non-fuzzy production systems run in serial

mode, and keep all data in the computer’s memory for backtracking and reference

in debugging and explanation. Most fuzzy expert systems run in parallel mode,

much faster than sequential programs. Since parallel programs do not backtrack,

it is not necessary to keep all data in memory; this means that parallel systems

can run indefinitely without overflowing memory. FLOPS furnishes an “erase

ON/OFF” command; when erase is ON, data that a program no longer needs are

removed from memory, and the space is returned to the operating system.
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Running parallel expert systems on-line in real-time then becomes an option avail-

able to the knowledge engineer.

Many, if not most, real-time on-line programs are closed loop; that is, the

program not only takes input from an external source, but also returns data to the

process that generates the data. The problem here is that errors in the program

can seriously affect the process, perhaps disastrously so.

Sometimes programs that interact with a user via mouse or keyboard are called

real-time or on-line. In this chapter, we consider primarily programs that are

hard-wired to processes that generate program input and (when closed-loop)

accept program output. Programs that depend on interaction with a human user

have much more tolerance for delays than most hard-wired programs. A human

will normally tolerate a delay of 6 or 7 s between human input and computer

response; hard-wired programs often require responses in milliseconds or even

faster. Also, if a human is constantly interacting with the program, it is difficult

for a runaway program to remain undetected; hard-wired programs with defects

can have catastrophic results.

15.2 INPUT/OUTPUT ON-LINE IN REAL-TIME

There is a great variety of ways in which data can be transferred automatically to a

running program, including RS232 and its descendants, parallel ports, Ethernet, hard

disk, USB, the Web, and so on with an ever-increasing number of options. Further,

each application will have its own data formats. It is asking a lot of a programming

language to furnish configurable drivers for all the possible I/O channels, and it is

virtually impossible for an expert system shell to furnish built-in drivers to accom-

modate all the various I/O possibilities and data formats. There are a number of

hardware and software packages available for using a wide variety of input/
output channels. It is very likely that driver code must be written in a language

like C or Cþþ to get our data in and out. The expert system shell should furnish

links to user-written functions to do the I/O, with sample functions to provide guide-

lines for the users to write their own I/O routines.

For on-line data input, FLOPS provides the “acquire” command, which links to a

“getdata( )” or “putdata( )” function that does the hardware-specific data input/
output. The acquire command syntax is

acquire <command> (parameters)

<command> is used to control the getdata() function, by specifying the operation to

be performed. Permissible values are INIT, READ, REREAD, WRITE, REWRITE,

and END. Only four commands cause data transfers other than device status; READ,

REREAD, WRITE, and REWRITE. In all cases, device status will be returned as a

status attribute value if possible.

If <command> is INIT or END, the parameters are user-determined to initialize

or close the input device. For example, if data are to be read from disk the only
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parameter might be the name of the disk file. (Disk-recorded data are very useful

when debugging or calibrating a program.)

When all the data records have the same format, the READ command syntax is

READ <data element number> <attribute 1> <attribute 2> � � �

<data element number> is the pattern number if the acquire command appears on the

RHS of a rule, as in “in 2 attrib ¼ . . .”. If the acquire command is used from the

command line, then <data element number> is the time tag of the data element.

The data element must contain an attribute status of type str, to hold the

device status on completion of the I/O operation. If not, an error message will be

issued and program execution will halt.

The WRITE command will simply have as parameters the values to be written

WRITE <value1> <value2> � � �

REREAD and REWRITE are used when the records have different formats; in

that case, a READ command inputs a record and returns information to determine

the format; the REREAD command then rescans the input record according to its

format, and returns actual data values to the FLOPS program. Similarly, for

output the WRITE command holds the output format, and the REWRITE

command actually outputs the data. The syntax of these commands is usually

READ <data element number> <format string>
WRITE <format string>
REREAD <data element number> <attribute 1> <attribute 2> � � �

REWRITE <value 1> <value 2> � � �

The acquire command is almost always held in the consequent of a rule.

Sample getdata( ) functions for disk data input are SIMPLE.CPP (when all input

records have the same format) and RECTYPES.CPP (when input records may have

different formats) are provided with FLOPS. Either routine may be linked in using

the Microsoft Visual Cþþ linker, and alternative getdata( ) functions may be pro-

grammed and linked also usingMicrosoft Visual Cþþ. In the educational version of

FLOPS furnished with this book, the getdata( ) function in SIMPLE.PAR is linked

in to FLOPS; the corresponding output function putdata( ) is not included.

15.3 ON-LINE REAL-TIME PROCESSING

Fuzzy control programs are often embedded in other systems, and many are written

for special-purpose microprocessors in assembly language. Such programs are vir-

tually always procedural, and their development requires special control-oriented

program development environments. FLOPS is not really suitable for this work.

However, FLOPS can be used for more complex control programs, when a PC
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can be used to run the program. (One of the first FLOPS programs was written to

control drug injection to stabilize blood pressure of patients in an intensive care

unit.)

Real-time on-line programs usually begin with more-or-less extensive initializa-

tion, of input/output routines and program variables. We then enter the processing

loop itself.

15.3.1 Detection of Obvious Artifacts in the Input Data Stream

The input data should be scanned to check for unreasonable values. The simplest

check, which should always be performed, is a range check on input values. A

range check can also be performed on rates of change of input values; this

usually requires data smoothing, discussed in Section 15.3.2.

15.3.2 Data Smoothing and Time Delays and Baselines:
Exponential Smoothing

It is very common for the input data to require smoothing. This is especially true if

rates of change of input data are to be determined; while integration of an input vari-

able is little affected by noise, differentiation tends to multiply noise in the input

data, usually requiring that the input data be smoothed.

There are several different smoothing techniques, including a class called moving

averages. One of the simplest and most effective has an unwieldy name—

exponentially mapped past average, equivalent to passing analog input data

through a low-pass filter. (We will call it simply exponential smoothing.) Assume

that we have a stream of data points yi coming in at equally spaced times ti . We

have a single parameter, TC (for time constant) that controls the degree of smooth-

ing. The smoothed value of y, say ysi, is given by

ysi ¼ ( yi þ TC � ysi�1)=(TCþ 1) (15:1)

ys is initialized to the first value of y. If TC is 0, ys simply equals y. As TC increases,

the smoothing becomes more and more heavy.

Simple FLOPS code for exponential smoothing might be

declare Data
x flt
xSmooth flt
TC flt;

rule (goal Smooth x)
IF (in Data x = <X> AND xSmooth ¼ <XS> AND TC = <TC>)
THEN in 1 xSmooth = ((<X> + <XS> * <TC>)/(1 + <TC>);

It is well to initialize xSmooth to the initial value of x.
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Consider some examples of this smoothing. Suppose that y is a constant one with

intermittent noise of+0.5. Then for values of TC ¼ 1, 2 and 4, we have Table 15.1.

It is obvious that the greater the time constant TC, the greater the smoothing for a

steady-state signal with superimposed noise.

We now consider the case where the input signal is not steady state, but is steadily

increasing, as shown in Table 15.2.

It is easy to see from Table 15.2 that after 20 samples, the smoothed value with

time constant 1 closely represents the unsmoothed value 1 time sample ago; the

smoothed value with TC ¼ 2 represents the value 2 samples ago; and the smoothed

value with TC ¼ 4 represents the unsmoothed value 4 time samples ago. If the

rate of change itself is reasonably constant, the moving average method

furnishes a delay approximately equal to the time constant expressed in numbers

of samples.

Another example of a time delay resulting from exponential smoothing is shown

graphically in Figure 15.1.

Table 15.2 and Figure 15.1 indicate that after a few time constants have passed,

the smoothed value approaches the input value with a delay of about one time con-

stant. Thus at time 5 and thereafter, the smoothed value with time constant 1 closely

approaches the input value 1 time unit previously. At time 10 and thereafter, the

smoothed value with time constant 2 closely approaches the input value 2 time

units previously; and at time 20 (and thereafter), the smoothed value with time con-

stant 4 closely approaches the input value 4 time units previously. Exponential

smoothing not only smooths the input but also introduces a time lag approximately

equal to the smoothing time constant. This permits the programmer economically to

compare a current input value to a smoothed past value without storing a table of

previous values, quite useful in looking for events signaled by sudden changes in

the input value.

TABLE 15.1 Exponential Smoothing with Various

Time Constants.a

yi ys, TC 1 ys, TC 2 ys, TC 4

1 1.00 1.00 1.00

1.5 1.25 1.17 1.10

0.5 0.88 0.94 0.98

1 0.94 0.96 0.98

1.5 1.22 1.14 1.09

0.5 0.86 0.93 0.97

1 0.93 0.95 0.98

1.5 1.21 1.14 1.08

0.5 0.86 0.92 0.96

1 0.93 0.95 0.97

ay is the noisy input signal; ys is the smoothed value; TC is the

smoothing time constant.

15.3 ON-LINE REAL-TIME PROCESSING 261

TEAM LinG - Live, Informative, Non-cost and Genuine !



Figure 15.1 Exponential smoothing of a ramp function, showing time delay of smoothed

function approximately equal to the time constant 5.

TABLE 15.2 Exponential Smoothing of a Steadily

Increasing Inputa

T y(t) ys, TC 1 ys, TC 2 ys, TC 4

1 1 1.00 1.00 1.00

2 2 1.50 1.33 1.20

3 3 2.25 1.89 1.56

4 4 3.14 2.59 2.05

5 5 4.06 3.40 2.64

6 6 5.03 4.26 3.31

7 7 6.02 5.18 4.05

8 8 7.01 6.12 4.84

9 9 8.00 7.08 5.67

10 10 9.00 8.05 6.54

11 11 10.00 9.03 7.43

12 12 11.00 10.02 8.34

14 14 12.00 11.02 9.27

14 14 14.00 12.01 10.22

15 15 14.00 14.01 11.18

16 16 15.00 14.00 12.14

17 17 16.00 15.00 14.11

18 18 17.00 16.00 14.09

19 19 18.00 17.00 15.07

20 20 19.00 18.00 16.06

ay is input; ys is the smoothed value; and TC is the smoothing time

constant.
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An important use for the smoothed and delayed input values produced by expo-

nential smoothing is to furnish values for a “wandering baseline”. In some processes,

baseline values for measurements may be subject to changes due to changes in the

process. For example, consider the heart rate of a patient in an intensive care unit

measured on a beat-by-beat basis. Over the course of a day, this rate will change

slowly due to patient activity level, and considerably more rapidly due to any

heart-rate arrhythmias. Exponential smoothing with a suitable time constant

(perhaps 20–40 s or so) will produce a baseline heart rate that varies slowly

with activity level, but is insensitive to momentary changes due to onset and ces-

sation of arrhythmias. Comparison of the momentary heart rate to the smoothed

baseline value offers a way to detect the onset and cessation of hear-rate

arrhythmias.

If an exponentially smoothed baseline is used for detection of an event that causes

the input signal to depart significantly from the baseline, it is desirable to avoid

updating the baseline until the event is over.

15.3.3 Rates of Change: Differentiating Noisy Data

Reliable numerical differentiation of a noisy input is not easy to accomplish, but

may be needed for a variety of reasons, including artifact detection, process

control, and event detection. A quick but crude determination of instantaneous

rate of change may suffice to exclude obvious artifacts.

Let us compare some very simple ways of getting a first derivative of a noisy

input signal.

First, we could use the original unsmoothed input values:

rate1 ¼ ( yi � yi�1)=Dt (15:2)

We could also use adjacent smoothed values:

rate2 ¼ ( ysi � ysi�1)=Dt (15:3)

We could also smooth the raw rates:

rate3i ¼ (rate1i þ rate1i�1)=2 (15:4)

Table 15.3 gives examples of steadily increasing data subject to random fluctu-

ations. In this table, y is the original data, and y smoothed is the original data

smoothed with a time constant of one. Rates of change rate 1, rate 2, and rate 3

are obtained using formulas (15.2), (15.3), and (15.4) above. While the mean

rates of change for the various methods do not differ very much, the fluctuations

in the rates of change are considerably greater when using the unsmoothed data

than when either using smoothed y values to determine the rate or when smoothing

the rates obtained with unsmoothed input.
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15.3.4 Rates of Change: Differentiating Wandering Data

It frequently happens that while the input data have very little random fluctuations,

they may follow a curvilinear path with varying curvature. Formulas for differentiat-

ing data of this type are then required to give reasonably accurate rates of change

without time lags. To get an estimate of rate of change of wandering curvilinear

data, assume that the input is a function of time, realized as a time series of measure-

ments taken at equal time intervals Dt. Expand this function into a McClauren series;

f (t � Dt) ¼ f (t)� f 0(t)Dt þ f 00(t)(Dt2)� � � � (15:5)

We can also write

f (t � 2Dt) ¼ f (t)� f 0(t)(2Dt)þ f 0(t)(2Dt)2 � � � � (15:6)

Dropping the terms after the second derivative, we manipulate these two equations

to eliminate the second derivative term, and obtain

f 0(t) ¼ (3f (t)� 4f (t � 1)þ f (t � 2))=(2Dt) (15:7)

TABLE 15.3 Rates of Change of Noisy Data Obtained With and Without

Smoothinga

y y Smoothed rate 1 (15.2) rate 2 (15.3) rate 3 (15.4)

3.080 2.324 1.046 0.756 0.937

3.790 3.057 0.710 0.733 0.878

4.802 3.929 1.012 0.873 0.861

6.275 5.102 1.473 1.173 1.243

6.514 5.808 0.239 0.706 0.856

8.261 7.034 1.747 1.226 0.993

9.314 8.174 1.054 1.140 1.400

10.209 9.192 0.895 1.017 0.974

10.545 9.869 0.336 0.677 0.615

11.914 10.891 1.369 1.023 0.852

14.363 12.127 1.449 1.236 1.409

14.290 14.209 0.928 1.082 1.188

14.874 14.041 0.583 0.832 0.755

16.462 15.252 1.588 1.210 1.086

17.371 16.311 0.909 1.060 1.249

17.556 16.934 0.185 0.622 0.547

19.450 18.192 1.893 1.258 1.039

19.864 19.028 0.414 0.836 1.154

Mean 0.991 0.970 1.002

StdDev 0.519 0.217 0.244

Range 1.708 0.636 0.862

aSee formulas 15.2, 15.3, and 15.4.
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The third derivative can also be eliminated by

f 0(t) ¼
�11F(x)þ 18F(xþ Dx)� 9F(xþ 2Dx)þ 2F(xþ 3Dx)

6DX
(15:8)

Equation (15.7) corrects the input stream for presence of a (constant) second deriva-

tive, and assumes that the third and all higher derivatives are zero; (15.8) corrects

also for a third derivative. There is no time lag in the result. Deriving similar for-

mulas that eliminate the effect of higher order derivatives is a straightforward but

somewhat tedious task.

While formulas like (15.7) and its higher order counterparts correct for the pre-

sence of 2nd and higher order derivatives in the input data stream, they are virtually

useless for eliminating the effects of random noise in input data.

15.4 TYPES OF RULES USEFUL IN REAL-TIME

ON-LINE WORK

15.4.1 Fuzzy Control Rules

The field of fuzzy control has been discussed in depth in many excellent books; see,

for example, Pedrycz (1995), deSilva (1995) . . . . Since our main interest is the use

of fuzzy expert systems in other than control applications, we will only outline the

main features of fuzzy control rules.

A typical fuzzy control rule has this format:

IF (x1 is Small and x2 is Slow) THEN y is Positive; (15:9)

Ordinarily x1, x2, and y are scalar numbers, although it is not uncommon for x1 and x2

to be fuzzy numbers. Small, Slow, and Positive are members of discrete fuzzy sets

properly called linguistic variables, in which each member such as Small has an

associated membership function. Usually, there are several such rules, fired in parallel.

Rule (15.9) is much more complex than it appears; many steps and several

choices are involved before its evaluation is complete.

The first step is fuzzification; that is, the input values xi are used with the member-

ship functions to determine the grades of membership of Small, Slow, and so on in

their respective linguistic variables. Next, the truth values of the input clauses (x1 is

Small, x2 is Slow . . .) are combined, usually using a t-norm operator, to get truth

values for the antecedents of the various rules to be fired together. The combined ante-

cedent truth values now become the truth value of the consequent, and in (15.9) the

truth value of Positive. We are now ready to start the defuzzification process, and

determine a numeric value for y. The membership function for Positive is modified

by taking the fuzzy AND of the membership function truth values with the antecedent

truth value. Now the consequents of the various rules must be aggregated, which

means combining the membership functions together to form a single complex
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fuzzy number (not necessarily convex) defined on the real line. We then use one of the

methods available (most often the centroid method) to derive a value for y.

While the notation of rule (15.9) is quite compact, it is quite inflexible, and not

really useful for general-purpose fuzzy reasoning. In FLOPS, for flexibility and

clarity we break out fuzzification and defuzzification as separate consequent

operations. We also refer specifically to the names of input and output linguistic vari-

ables (discrete fuzzy sets). The complete FLOPS code for such a control rule

might be

:------------------------------------------------------
:Data declarations

declare Data
x1 flt
x2 flt
y flt
size fzset (Small Medium Large)
speed fzset (Slow Medium Fast)
output fzset (Negative Zero Positive;

:------------------------------------------------------
:Define membership functions

memfunct Data size linear
Small.....;

:------------------------------------------------------
:Fuzzify inputs

rule block 1 (goal Fuzzify inputs)
IF (in Data x1 = <X1> AND x2 = , X2)
THEN

fuzzify 1 size <X1>,
fuzzify 1 speed <X2>,
fire block 1 off,
fire block 2 on;

:------------------------------------------------------
:Fuzzy inference

rule block 2 (goal Rules to get output fuzzy sets from
input fuzzy sets)
IF (in Data size is Small AND speed is Slow)
THEN

in 1 output is Positive,
fire block 2 off,
fire block 3 on;

:------------------------------------------------------
:Defuzzification to get output
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rule block 3
IF (Data)
THEN

defuzzify 1 output centroid 1 y ;

Note that FLOPS syntax permits using the linguistic term Medium in two differ-

ent contexts; fuzzy control rules do not often permit this, since their linguistic terms

such as Medium are not usually associated with a specific linguistic variable, in this

case size and speed.
The point to having fuzzification and (especially) defuzzification as separate

operations is that the discrete fuzzy sets and the grades of membership of their

members are available for use elsewhere in the program, either as input to succeeding

stages of reasoning or as output to the user. It is not always necessary to have a

defuzzification rule; programs that have their output in words rather than in

numbers may not have any defuzzification taking place at all.

This rule scheme requires definition of the input (and output) linguistic variables,

the discrete fuzzy sets, their members, and membership functions, at some time

before the rules are fired. Although it is possible to define these fuzzy sets as the

program runs, using information acquired during the run, in practice the input and

output fuzzy sets are almost always defined when the program is written, rather

than during the course of a run.

A potential problem with this type of rule is the “combinatorial explosion” in

number of rules as the number of input variables and input fuzzy set members

increases. Suppose we have N input numeric variables and (correspondingly) N

input linguistic variables, each of which has M members We then have MN possible

combinations of input linguistic variable members, and MN possible rules; there is

an exponential increase in the number of rules with the number of input variables.

The Combs method, although requiring more rules for a small number of input vari-

ables, has a linear rather than exponential growth in the number of rules as the

number of input variables increases.

15.4.2 Focused Control-Type Rules and Focused Membership Functions

It is well known that in control programs utilizing the standard type of fuzzy control

rules, that the number of rules goes up exponentially with the number of input vari-

ables, the “combinatorial explosion” problem.

This is because if we have N input variables fuzzified into N linguistic variables

(discrete fuzzy sets describing numbers) with M linguistic terms (fuzzy set

members) each, we construct rules with all combinations of the linguistic terms

for each variable. This gives usM rules for one variable, M2 rules for two variables,

and MN rules for N rules.

If the objective of our program is to detect particular events in which we are

interested, we may be able to use rules to detect the events in which we are

interested and to ignore others, with a substantial reduction in the number of rules

required.
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For example: in program ECHO.PAR to classify regions of an echocardiogram,

we have these input fuzzy sets:

declare Region
size fzset (TINY SMALL MEDIUM LARGE HUGE)
xpos fzset (FAR-LEFT LEFT CENTER RIGHT FAR-RIGHT)
ypos fzset (VERY-HIGH HIGH MIDDLE LOW VERY-LOW)
class fzset (ARTIFACT LUNG LA LV LA+LV RA RV RA+RV
LA+LV+RA+RV);

The rules are focused on detecting the output fuzzy set members. A rule for detecting

one kind of artifact is

IF (size is TINY) THEN class is ARTIFACT;

All TINY regions, regardless of placement, are artifacts. This single rule replaces 25

generic rules of the control type. Similarly, a different type of artifact is detected by

the rule

IF (size is SMALL AND ypos is VERY-HIGH) THEN class is
artifact;

This rule replaces 25 generic rules.

It is possible to reduce the number of rules and to increase their effectiveness by not

only focusing the rules on the desired outputs, but also by focusing the membership

functions. Program IRIS.PAR, presented in Chapters 7 and 12, illustrates this technique.

In this program we have four input numeric variables (petal length, petal width, sepal

length, and sepal width) and three possible outputs (setosa, versicolor, and virginica).

Instead of fuzzifying the inputs into discrete fuzzy sets with members such as

(Small, Medium, Large), our input fuzzy sets have members (setosa, versicolor, virgi-

nica). The membership functions for these linguistic terms are derived from the charac-

teristics of the corresponding plant species. There are only three classification rules:

IF (petal-L is setosa AND petal_W is setosa AND sepal-L
is setosa AND sepal-W is setosa)
THEN class is setosa;

IF (petal-L is versicolor AND petal_W is versicolor AND
sepal-L is versicolor AND sepal-W is versicolor)
THEN class is versicolor;

IF (petal-L is virginica AND petal_W is virginica AND
sepal-L is virginica AND sepal-W is virginica)
THEN class is virginica;

The technique here is not to use such generic input fuzzy set members and

membership functions as in Section 15.4.1, but to use input fuzzy set members

and membership functions that are directly related to the desired outputs.
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15.4.3 Fuzzy Reasoning with Approximate Numerical Comparisons

In 15.3.1 we have discussed the determination of a varying baseline using exponen-

tial smoothing. It is quite possible that we would like to compare an input to some

number (like a varying baseline) that is determined during the course of a run in

order to detect an event.

It is possible to revise membership functions during the course of a run and

fuzzify an input number using the revised membership functions, but this is some-

what awkward. It is often simpler and more direct to use approximate numerical

comparisons for this purpose.

We will take advantage of a real-world program to detect malfunctions of an

instrument used in a hospital intensive care unit to measure indirectly blood pressure

in the left atrium of a patient’s heart after open-heart surgery. Blood pressure is

measured from an intravenous catheter that runs through the right heart into the

pulmonary artery.

These data are sometimes very noisy, with artifacts caused by patient movement,

coughing, and the like, so detection of all artifacts is an almost hopeless task. We do

get rid of the worst artifacts, but our main reliance is on rules focused on the events

we wish to detect.

We have kept track of a pressure baseline by using exponential smoothing of

the input pressures with a fairly large time constant. In our program notation, the

pressures are

PAPs ¼ systolic pulmonary artery pressure

PAPd ¼ diastolic pulmonary artery pressure

PP ¼ pulse pressure

MPAPs ¼ systolic pulmonary artery pressure moving average

MPAPd ¼ diastolic pulmonary artery pressure moving average

MPP ¼ pulse pressure moving average

Here is a summary of the rules for event detection:

:Block 11 detect abnormal data
:r56 (goal Event PAPinRV if PP ~= PAPs and PAPs unchanged)
:r57 (goal Event PAPinRV if PAPs same AND PAPd ~< MPAPd)
:r58 (goal Event PAPinRV if 1st good sample & PP ~= PAPs)
:r59 (goal Event Wedged if PP ~< MPP & PAPs ~< MPAPs & PAPd

~<= MPAPd)
:r60 (goal Event Overwedged if PP ~< MPP & PAPs ~> MPAPs)
:r61 (goal Event Damped if PAPd ~= PAPs)
:r62 (goal Event Damped if PP ~< MPP)

You will note that every rule is focused on the event to be detected and makes use

of approximate numerical comparisons between the current pressures and the
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wandering baseline moving averages. (The actual rules are more complicated, and

take care of such features as not too much noise in the data and some bookkeeping

chores.)

15.5 MEMORY MANAGEMENT

Data-driven production systems firing their rules sequentially usually retain all data

created or modified in the computer’s memory. This is critical in sequential rule-

firing programs. When backtracking, the data that made a rule on the backtrack

stack originally fireable may have been subsequently modified or deleted by the

time the backtracked rule is popped off the stack for firing. If these data are referred

to in the rule’s consequent, they must be recovered and made available when the rule

is finally fired. In addition, in both sequential and parallel programs it may be desirable

for old data to be recovered for inspection for debugging or explanation purposes.

However, keeping old data indefinitely is not practical for programs that may run

indefinitely, such as real-time on-line programs. Fortunately, such programs are

virtually always run in parallel mode; since there is no backtracking in parallel

systems, it is not required that data having been modified or deleted by the

program be retained. During program development and test it is desirable to

retain old data, but not during production runs. Consequently, in parallel mode

retaining deleted data may be turned off. FLOPS furnishes an “erase ON/OFF”
command to control retention of old data. If erase is OFF, old data are indefinitely

retained; if erase is ON, data deleted or modified by the program are immediately

removed from memory and the space used returned to the operating system. In

this way, old data may be made available during program development and test,

but may be removed in production runs.

15.6 DEVELOPMENT OF ON-LINE REAL-TIME PROGRAMS

Modularization of on-line real-time programs is even more important than in most

other types or programs. Basic modules are data acquisition and output; graphical

user interface; and data analysis.

a. Data acquisition. The first module to be written should be for data acqui-

sition. Initially, data should be acquired and written to disk in a record

format similar to that in which the data will be presented to the analysis

module when running on line. This will permit program development and

debugging off line.

b. Data screening.After the data are input, they should be screened for obvious

artifacts. Data smoothing can be incorporated next, to prepare the data for

analysis. Further checks for data validity can use the smoothed data, to

check for random noise, unreasonable rates of change, and other artifacts.

270 RUNNING ON-LINE IN REAL-TIME

TEAM LinG - Live, Informative, Non-cost and Genuine !



c. Processing the data. After the data screening section, we are ready for pro-

cessing the data. This is, of course, completely application dependent. Since

many if not most on-line real-time run unsupervised by humans, the analysis

routines tend to be fairly complex to take care of all reasonable eventualities.

If events are to be detected, we can make sure that the event lasts long

enough not to be artifactual.

d. Check for validity of output. In the analysis phase, further check for val-

idity may be made, together with checks that any serious artifacts are no

longer occurring.

e. Program output. Finally, the program output is programmed.

We discuss below the structure of an actual deployed real-time on-line fuzzy

expert system for event detection and alarm generation for patients in a hospital

intensive care unit. Omitted from this discussion are the program blocks for

acquiring the data. Output of this program was voice alarm messages sent over

the computer’s speakers, in addition to hard disk log of events.

Table 15.4 lists the major program blocks for processing the input data stream.

Data for this program were obtained via RS232C in one institution and via Ethernet

in another; Table 15.4 does not list the program blocks that implement I/O, but only
lists the processing blocks. Block 9 detects a single event, but this may be a fluke;

initiation of a formal event and issuance of an alarm require more than a single

detected event, and are done by blocks 11 and 12. If an event is taking place on

an input measurement variable, block 14 suspends updating the exponentially

smoothed and delayed baselines.

In Table 15.4, block 9 does initial event detection. However, alarms are not

issued as soon as an event is detected on one data input record; it is necessary to

verify that an alarm event is indeed taking place. Blocks 10, 11, and 12 perform

this verification. Alarms are actually issued by Block 12. While events are taking

TABLE 15.4 Rule Blocks for Processing Input Data in an

On-Line Real-Time Program for Event Detection and Alarm

Generation

Block 3: Update missing data count, preliminary data calculations

Block 4: Eliminate unreasonably high amplitudes

Block 5: Initialize or update short-term exponential smoothing

Block 6: Get short-term rates of change

Block 7: Eliminate artifacts based on high rate of change

Block 8: Initialize long-term exponentially smoothed baselines once

Block 9: Detect events

Block 10: Mediate conflicts between events

Block 11: Get data for initiation and termination of formal events

Block 12: Initiation and termination of formal events

Block 13: Reset events if data back to normal, get noise

Block 14: Update long-term exponentially smoothed baseline
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place, or if it is found that noise in the input data exceeds allowable limits, updating

baselines by block 14 is suspended until Block 13 determines that the process has

returned to normal.

15.7 SPEEDING UP A PROGRAM

In spite of the tremendous increases in computer processor speeds and the speed

advantage of parallel over sequential rule-firing modes, it is still quite possible

that the speed demands made by the real world may be too much for a program

written in such a language as FLOPS to handle. While production systems are

relatively slow compared to procedural languages, their power, flexibility, and

debugging features make program development and debugging more convenient

than say a C compiler. One way to approach this situation is to develop the

program methodology using a production system off-line, and then recode the

working production system into a procedural language, replacing fuzzy logic with

interval logic. This procedure was followed in the alarm expert system outlined in

Section 15.6. The initial program was developed, tested, and debugged in FLOPS.

While FLOPS program worked very well to monitor a few patients, the final

system would have to monitor perhaps several dozen patients simultaneously.

After recoding into Cþþ, the program was capable of handling a large number

of patients concurrently. Interestingly, the program was written in the 1980s,

when computers were more than an order of magnitude slower than at this

writing; the original FLOPS program, without recoding into Cþþ, could well

have handled a few dozen patient beds if run on a modern 2.5 or 3-GHz machine.

15.8 DEBUGGING REAL-TIME ONLINE PROGRAMS

It is usually very undesirable to attempt to debug a real-time on-line program while it

is directly wired to the source of data, especially so if the program is closed-loop.

It is best to collect the input data in a disk file or files, so that the program can be

run off line for creation and debugging.

One should seldom attempt to write the whole program before testing it. The

program should be developed in modular fashion, beginning with the program

section that inputs the data. Next, one proceeds to the sections that check for

obvious artifacts in the input data, and compensates for noisy data, perhaps adjusting

moving average time constants. When the data are successfully input and screened,

we can go on to the sections that perform the appropriate actions.

It is often helpful to write a program that will simulate the process that generates

the data. For example, a program that stabilized a patient’s blood pressure by con-

trolling injection of sodium nitroprusside used a small analog computer to simulate

the heart action and its nitroprusside response in order to debug the expert system.

More often, a procedural language program or another expert system can be written

to simulate the process.
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One important note. A general principle for computer programs is Always give

the user a way out. It is imperative that there be checks that the program is not mal-

functioning, with provision for an orderly shutdown if necessary.

15.9 DISCUSSION

The ability of a complex expert system to run in real-time on-line to a process has

strong implications for event detection, especially for fault detection and analysis.

While such a system resembles fuzzy control systems insofar as input is concerned,

the programming techniques for event detection and analysis are quite different and

more complex than for fuzzy control. We have written two such programs, both for

hospital intensive care units (ICU). The first and simplest was for suppression of

false alarm detections in a neonatal ICU for low blood oxygen saturation. As an

infant squirmed around, a simple threshold method detected many more false

alarms than true ones. The second was for detection and classification of several

alarm conditions from pulmonary artery pressure catheters in a heart transplant

ICU and an open-heart surgery ICU. Not only was the detection and classification

difficult, but like the first problem there were many measurement artifacts that

had to be accounted for. Both projects were successful.

15.10 QUESTIONS

15.1 What are two differences between programs that interact with a human via

keyboard or mouse on-line in real-time and a program hard-wired to a

process?

15.2 What objectives other than process control can real-time on-line fuzzy

expert systems achieve?

15.3 What FLOPS command is used to input and output real-time on-line data?

15.4 How can obvious data artifacts be detected?

15.5 How can data be smoothed?

15.6 What characteristic of exponential smoothing is a possible disadvantage?

15.7 What useful purposes can the time delay introduced by exponential smooth-

ing serve?

15.8 How can relatively high-frequency input noise be quantitated?

15.9 How can rates of change be corrected for the presence of second or third

derivatives in the input data?

15.10 Write a typical fuzzy control rule, and define the data types to which the

symbols correspond.
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15.11 What are the advantages and disadvantages of typical fuzzy control rules?

15.12 What are the advantages and disadvantages of focused fuzzy reasoning

rules?

15.13 What are the advantages of using fuzzy numerical comparisons?

15.14 How do data-driven programs that fire their rules sequentially manage

memory of data? Why? What disadvantage does this have for real-time

on-line work?

15.15 How do data-driven programs that fire their rule in parallel manage memory

of data? Why? What advantage does this have for real-time on-line work?

15.16 What are the five major steps in processing on-line data in real-time?

15.17 How can a real-time on-line fuzzy expert system be speeded up?

15.18 What is the procedure for debugging a real-time on-line program?
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APPENDIX

List of FLOPS Programs on
Wiley Web Site
(May be slightly modified from this list.)

:Exercise AndOrNot.fps

message "Compiling AndOrNot.fps";
declare Data p flt q flt

NotP flt :tv, NOT P
ZandPQ flt ZorPQ flt :tv, P and Q, P or Q, Zadehian

max-min logic
PandPQ flt PorPQ flt :tv, P and Q, P or Q,

probabilistic logic
BandPQ flt BorPQ flt; :tv, P and Q, P or Q, bounded

sum/difference logic

:rule r0
rule (goal Input p and q truth values)
IF (in Data p.cf = 0)
THEN

write "Input p" ,
read 1 p,
write "Input q (negative to quit)",
read 1 q;

:rule (goal Quit if q negative)
:rule r1
rule
IF (in Data q < 0)
THEN exit;

:rule (goal Calculate NotP, aANDb, aORb by various
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multivalued logics)
:rule r2

rule
IF (in Data p = <P> AND q = <Q> AND NotP.cf = 0 AND q >= 0)
THEN

in 1 NotP = (1 - <P>),
in 1 ZandPQ = (min(<P>, <Q>)) ZorPQ = (max(<P>,
<Q>)),

in 1 PandPQ = (<P> * <Q>) PorPQ = (<P> + <Q> - <P> * <Q>),
in 1 BandPQ = (max(0, <P> + <Q> - 1)) BorPQ = (min(<P>
+ <Q>, 1));

:rule r3
rule (goal Print results and try again)
IF (in Data NotP = <NOTA> ZandPQ = <ZAND> ZorPQ = <ZOR>
PandPQ = <PAND> PorPQ = <POR>

BandPQ = <BAND> BorPQ = <BOR> p = <P> q = <Q>)
THEN
write "p <P> q <Q>\n",
write "Max-min Zadehian logic\n",
write "p AND q <ZAND> p OR q <ZOR> NOT p <NOTA>\n",
write "Probabilistic logic\n",
write "p AND q <PAND> p OR q <POR> NOT p <NOTA>\n",
write "Bounded sum logic\n",
write "p AND q <BAND> p OR q <BOR> NOT p <NOTA>\n\n",
delete 1,

make Data;

make Data;
message "Ready to run";
run;

:******************************************************
:program AUTO1.FPS - why doesn’t the auto start ?
:all knowledge stored in rules
:total rules = 14 = number of nodes in decision tree + 3
:number of rules goes up as complexity of tree increases
:******************************************************

string = "Trouble diagnosis\: auto will not start.\n" ;
string + "Auto1.fps has 14 rules - expert knowledge in

rules.\n";
string + "compiling program auto1.fps...\n" ;
message "<string>";
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declare Answer
reply str
verify str ;

declare Hypothesis
working str ;

:++++++++++++++++++++++++++++++++++++++++++++++++++++++

:tests whether engine turns over
:rule r0
rule rconf 999 (goal Check whether engine turns over)

IF (Answer)
(in Hypothesis working.cf = 0)

THEN
reset ,
input "Does the starter turn your engine over
(y/n) ?\n"
1 reply lcase y n ,

in 1 verify = "n" ,
in 2 working = "engine will not turn over" ;

:tests battery
:rule r1
rule rconf 999 (goal Check if dead battery)

IF (in Answer reply = <R> AND verify = <R>)
(in Hypothesis working = "engine will not turn over")

THEN
reset ,
input "Do your lights come on (y/n) ?\n"
1 reply lcase y n ,

in 1 verify = "n" ,
in 2 working = "dead battery" ;

:tests blown fuse
:rule r2
rule rconf 998 (goal Check if blown fuse)

IF (in Answer reply = <R> AND verify = <R>)
(in Hypothesis working = "engine will not turn over")

THEN
reset ,
input "Are any of your fuses blown (y/n) ?\n"
1 reply lcase y n ,

in 1 verify = "y" ,
in 2 working = "blown fuse" ;
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:tests battery connectors
:rule r3
rule rconf 997
(goal Check if loose battery connectors)
IF (in Answer reply = <R> AND verify = <R>)
(in Hypothesis working = "engine will not turn over")

THEN
reset,
input "Are your battery connectors loose (y/n) ?\n"

1 reply lcase y n,
in 1 verify = "y",
in 2 working = "loose battery connectors" ;

:------------------------------------------------------
:tests of no fuel
:1st level hypotheses
:rule r4
rule rconf 998 (goal Check if no fuel to engine)
IF (in Answer reply.cf = 0)

(in Hypothesis working.cf = 0)
THEN

reset ,
input "Do you smell gas at your carburetor (y/n) ?\n"

1 reply lcase y n ,
in 1 verify = "n" ,
in 2 working = "no fuel to engine" ;

:tests out of gas
:rule r5
rule rconf 999 (goal Check if no gas in tank)
IF (in Answer reply = <R> AND verify = <R>)

(in Hypothesis working = "no fuel to engine")
THEN

reset ,
input "Does your gas gauge read empty (y/n) ?\n"

1 reply lcase y n ,
in 1 verify = "y" ,
in 2 working = "out of gas" ;

:tests fuel filter
:rule r6
rule rconf 998 (goal Check if clogged fuel filter)
IF (in Answer reply = <R> AND verify = <R>)

(in Hypothesis working = "no fuel to engine")
THEN
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reset ,
input "Is your fuel filter clogged (y/n) ?\n"
1 reply lcase y n ,

in 1 verify = "y" ,
in 2 working = "bad fuel filter" ;

:------------------------------------------------------
:tests whether any spark
:rule r7
rule rconf 997 (goal Check if no spark)

IF (in Answer reply.cf = 0)
(in Hypothesis working.cf = 0)

THEN
reset ,
input "Can you see a spark between plug lead and
ground (y/n) ?\n" 1 reply lcase y n ,

in 1 verify = "n" ,
in 2 working = "no spark" ;

:check if distributor points open.
:rule r8
rule rconf 999 (goal Check if distributer points do not open)

IF (in Answer reply = <R> AND verify = <R>)
(in Hypothesis working = "no spark")

THEN
reset ,
input "Do your distributor points open slightly (y/n)\n"

1 reply lcase y n ,
in 1 verify = "n" ,
in 2 working = "distributor points misadjusted" ;

:checks for rainy weather
:rule r9
rule rconf 998 (goal Check if raining)

IF (in Answer reply = <R> AND verify = <R>)
(in Hypothesis working = "no spark")

THEN
reset ,
input "Is it raining (y/n) ?\n" 1 reply lcase y n ,
in 1 verify = "y" ,
in 2 working = "raining" ;

:checks for wet ignition
:rule r10
rule rconf 999 (goal Check if ignition wiring wet)
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IF (in Answer reply = <R> AND verify = <R>)
(in Hypothesis working = "raining")

THEN
reset ,
input "Is your ignition system wet ?\n" 1 reply
lcase y n ,
in 1 verify = "y" ,
in 2 working = "wet ignition" ;

:------------------------------------------------------

:report trouble if at end of path

:rule r11
rule rconf 0 (goal Terminal hypothesis verified - print
trouble)
IF (in Answer reply = <R> AND verify = <R>)

(in Hypothesis working = <H>)
THEN

message ’Your trouble is <H>\n’ ,
stop ;

:report failure to find trouble

:can’t find the trouble
:rule r12
rule rconf 0 (goal Hypotheses all rejected - can not
find trouble)
IF (in Answer reply.cf = 0)

(in Hypothesis working.cf = 0)
THEN

message ’Cannot find the trouble. Call a tow truck.
\n’ ,

exit ;

:------------------------------------------------------

:backtracks if answer not verified
:rule r13
rule rconf 999 (goal Backtracks if hypothesis rejected)
IF (in Answer reply = <R> AND verify <> <R>)

(in Hypothesis working = <X>)
THEN

reset ,
write ’Checked <X> NG and backtracking\n’ ,
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delete 1 ,
delete 2 ;

:++++++++++++++++++++++++++++++++++++++++++++++++++++++

make Answer ;
make Hypothesis ;
message ’AUTO1.FPS ready to run -\n’ ;
:run ;
:******************************************************

:******************************************************
:program AUTO2.FPS - general tree search program
:expert knowledge in data base
:five rules - number does not increase with depth or
:breadth of search
:includes data for auto problem
:******************************************************

string = "Trouble diagnosis\: auto will not start.\n" ;
string + "Auto2.fps has 5 rules, expert knowledge in data

base,\n" ;
string + "Data base in blackboard data file (relational

data base) format.\n" ;
string + "Compiling auto2.fps...\n" ;
message "<string>";

declare Answer :element to store user’s reply
reply str ;

declare Node :library data
hypo1 str :preceding hypothesis
hypo2 str :current hypothesis
question str :hypothesis-verifying question
verify str ; :hypothesis-verifying response

declare Messages
hypo str :verified hypothesis
message str; :message to send

declare Working :working hypothesis at the moment
hypo1 str :preceding hypothesis
hypo2 str :hypothesis under test
verify str; :hypothesis-verifying yresponse
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:++++++++++++++++++++++++++++++++++++++++++++++++++++++

:rule r0
rule (goal Sets up hypotheses, gets user response to
question)
IF (in Answer reply.cf = 0)
(in Working hypo1 = <H1>)
(in Node hypo1 = <H1> AND hypo2 = <H2> AND question
= <Q> AND verify = <V>)

THEN
reset ,
input "<Q> (y/n) ?\n" 1 reply lcase y n,
in 2 hypo1 "<H1>" hypo2 "<H2>" verify "<V>" ,
delete 3 ;

:------------------------------------------------------
:rule r1
rule (goal fires if hypothesis accepted)
IF (in Answer reply = <R>)
(in Working hypo1 = <H1> AND hypo2 = <H> AND verify
= <R>)
(in Node hypo1 = <H> AND hypo2 = <H2>)

THEN
reset ,
write "Verified <H>, next hypothesis <H2>\n" ,
in 1 reply.cf 0 ,
in 2 hypo1 "<H>" hypo2 "<H2>" ;

:rule r2
rule (goal fires if hypothesis rejected)
IF (in Answer reply = <R>)
(in Working hypo2 = <H> AND verify <> <R>)

THEN
write "rejected <H> and backtracking\n" ,
delete 1 ,
delete 2 ;

:------------------------------------------------------
:diagnosis

:writes out verified hypothesis and quits
:rule r3
rule 0 (goal writes out verified terminal hypothesis and
quits)
IF (in Answer reply <R>)
(in Answer reply = <R>)
(in Working hypo2 = <H2> AND verify = <R>)
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(in Messages hypo = <H2> AND message = <M>)
THEN

write "Verified hypothesis <H2>\n" ,
message nocancel "<M>\n" ,
write "Auto2 finished\n" ,
exit ;

:rule r4
rule 0 (goal fires if can\’t find the trouble)
IF (in Working hypo2.cf = 0)
THEN

message "Can\’t verify any hypothesis. Better call a
mechanic!\n" ,
exit ;

:++++++++++++++++++++++++++++++++++++++++++++++++++++++

:knowledge data base - preceding hypothesis, succeeding
hypotheis,
:hypothesis-verifying question, verifying response
transfer Node from nodes.dat ;
transfer Messages from messages.dat ;

:internal memory elements
make Answer;
make Working hypo1 "TOP" ;
message "AUTO2.FPS ready to run -\n" ;
run ;
exit ;
:******************************************************

// Function CorrLogic - given a, b and default r,
// returns aANDb and aORb
// 04-17-2004 WS

#include <math.h>

double min(double x, double y);
double max(double x, double y);

bool CorrLogic (double a, double b, double r, double
*aANDb, double *aORb)
{

double std, ru, r1;

if (a < 0 || a > 1 || b < 0 || b > 1 || r < -1 || r > 1)
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return false;
std = sqrt(a * (1 - a) * b * (1 - b));

if (std > 0)
{

ru = (min(a, b) - a * b) / std;
r1 = (max(a + b - 1, 0) - a * b) / std;
if (r < r1)

r = r1;
else if (r > ru)

r = ru;
}
*aANDb = a * b + r * std;
*aORb = a + b - a * b - r * std;

return true;
}

double min(double x, double y)
{

if (x < y)
return x;

else
return y;

}
double max(double x, double y)
{

if (x > y)
return x;

else
return y;

}

:program DEFUZZ.PAR

message ’Compiling program DEFUZZ to fuzzify and defuzzify
height of a person\n’ ;

thresh 1 ;

declare Data
height flt
defuzz flt
size fzset

( Short Medium Tall ) ;
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memfunct Data size linear
Short -1e6 4 4.5 5.5
Medium 4.5 5.5 5.5 6.5
Tall 5.5 6.5 7 1e6 ;

message ’Membership functions for fuzzy set size\:\n’ ;
drawmemf Data size ;

:rule r0
rule (goal Enter height data)
IF ( in Data height.cf = 0 )
THEN
input"Enterperson\’sheightinfeet\,0toquit\n"1height;

:rule r1
rule (goal Quit on entry of zero height)
IF ( in Data height 0 )
THEN

message nocancel ’Terminating program DEFUZZ\n’ ,
exit ;

:rule r2
rule (goal Fuzzify height into fuzzy set size)
IF ( in Data height <H> AND height > 0 )
THEN

message ’Height before fuzzification: <H>\n’ ,
fuzzify 1 size <H>,
fire block 0 off ,
fire block 1 on ;

:enable firing rule with zero cdonfidence in fuzzy set
members
TestFsetOff;

ruleblock1(goalPrintfuzzysetsize\,defuzzifyintodefuzz)
IF ( in Data defuzz.cf = 0 size.Short <S> size.Medium <M>

size.Tall <T> )
THEN

message ’Fuzzified height:\nShort <S> Medium <M> Tall
<T>\n’ ,

defuzzify 1 size maxav 1 defuzz ;

rule block 1 (goal Print defuzzified value\,
re-initialize

program)
IF ( in Data defuzz <X> )
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THEN
message ’Defuzzified value <X>\n’ ,
in 1 defuzz.cf = 0 height.cf = 0 ,
fire block 1 off ,
fire block 0 on ;

make Data ;
fire all off ;
fire block 0 on ;
message ’Program DEFUZZ ready to run\n’ ;
:run ;

:******************************************************
:DRAWMEMF.FPS - illustrates drawmemf command
:******************************************************

message "Program DRAWMEMF.FPS to illustrate the drawmemf
command." ;

:Specifications for the individual functions are given
in the memfunct

:command. The first number is the point where the
function first begins

:to rise from zero; the second number is the point where
the function

:reaches 1000. The third number is the point where the
function begins

:to decline from 1000; the fourth number is the point
where it reaches zero again.

:If the first number is -1e6, the function starts at 1000
for all values

:less than the third number, where it begins to decline
toward zero;

:the only effect of the second number is to tell drawmemf
where to start its plot.

:Similarly, if the fourth number is 1e6, the function
never declines

:toward zero after its initial rise to 1000 at the value
given by the

:second number; the only effect of the third number is to
tell drawmemf

:where to stop its plot.
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message "First membership functions are linear." ;

declare Data size fzset (SMALL MEDIUM LARGE) ;

memfunct Data size linear
SMALL -1e6 0 2 4
MEDIUM 2 4 4 8
LARGE 4 8 10 1e6 ;

drawmemf Data size ;

message "Next membership functions are s-shape." ;

memfunct Data size s-shape
SMALL -1e6 0 2 4
MEDIUM 2 4 4 8
LARGE 4 8 10 1e6 ;

drawmemf Data size ;

message "Last membership functions are normal." ;

memfunct Data size normal
SMALL -1e6 0 2 4
MEDIUM 2 4 4 8
LARGE 4 8 10 1e6 ;

drawmemf Data size ;
message "DRAWMEMF.FPS finished." ;
:exit ;
:******************************************************

:******************************************************
: sample program ECHO.PAR for classification of image

regions
: resolves contradictions: simplified for demonstration

purposes
: uses rule-generating rules for preliminary
classifications
: and crisp final classifications.
:******************************************************

message "Program ECHO.PAR for pattern recognition on
echocardiograms " ;
s-shape ;
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string = "Program ECHO.PAR for pattern recognition
has 26 " ;

string + "rules, five of which are to display information
to the " ;

string + "user. Twelve more rules will be generated from
a ";

string + "blackboard file, for getting preliminary and
crisp ";

string + "final classifications. Since this is a
demonstration ";

string + "program, fewer rules are generated than would ";
string + "normally be the case. \n";
string + "ECHO2 starts in parallel mode, but switches to

serial " ;
string + "mode so that the last printout of region data

is ordered " ;
string + "sequentially by region numbers.\n";
message "<string>";

string = "Classification and image data are read in
from ";

string + "blackboard files created by previous programs,
and ";

string + "final classifications are written to a black-
board file ";

string + "for succeeding programs.\n";
message "<string>";
message "Compiling program ECHO.PAR\n" ;

: DECLARATIONS

:raw data
declare Data
frame int
rnum int
area flt
xbar flt
ybar flt
border str ;

:region characteristics
declare Region :global region characteristics - INPUT
frame int :frame number
rnum int :region number within frame
area fznum :global region features
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size fzset :word equivalent of area
( TINY SMALL MEDIUM LARGE HUGE)

xbar fznum :x-centroid
xpos fzset :word equivalent of xbar

( FAR-LEFT LEFT CENTER RIGHT FAR-RIGHT)
ybar fznum :y-centroid
ypos fzset :word equivalent of ybar

( VERY-HIGH HIGH MIDDLE LOW VERY-LOW)
border str :YES or NO
class fzset :classifications

(
ARTIFACT :artifact
LUNG :lungs
LA :left atrium
LV :left ventricle
LA+LV :merged left atrium and ventricle
RA :right atrium
RV :right ventricle
RA+RV :merged right atrium and ventricle
LA+LV+RA+RV :all four chanbers artifactually

merged
)
final str ; :final classification

:rule firing control
declare Enable

block int ;

:printout control
declare Print

rnum int ;

:definitions for creating classification rules
declare Classdef

goal str size str x str y str class str borderop str
border str ;

:++++++++++++++++++++++++++++++++++++++++++++++++++++++
:Membership functions

memfunct Region size s-shape
TINY -1E6 50 100
SMALL 0 50 200 300
MEDIUM 100 200 500 1000
LARGE 300 500 2000 3000
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HUGE 1000 2000 5000 1e6 ;

memfunct Region xpos s-shape
FAR-LEFT -1e6 0 144 200
LEFT 88 144 256 312
CENTER 144 200 312 368
RIGHT 200 256 368 424
FAR-RIGHT 312 368 512 1e6 ;

memfunct Region ypos s-shape
VERY-HIGH -1e6 0 144 200
HIGH 88 144 256 312
MIDDLE 144 200 312 368
LOW 200 256 368 424
VERY-LOW 312 368 512 1e6 ;

string = "Membership functions for fuzzy sets\:\n" ;
string + "First fuzzy set is size, equivalent to region

area.\n" ;
string + "Members of size are TINY, SMALL, MEDIUM, LARGE

and HUGE.\n";
message "<string>";
drawmemf Region size ;
string = "Next fuzzy set is xpos, equivalent to

x-centroid position.\n" ;
string + "Members of xpos are FAR-LEFT, LEFT, CENTER,

RIGHT AND FAR-RIGHT.\n";
message "<string>";
drawmemf Region xpos ;
string = "Last fuzzy set is ypos, equivalent to

y-centroid position.\n" ;
string + "Members of ypos are VERY-HIGH, HIGH, MIDDLE,

LOW and VERY-LOW.\n";
message "<string>";
drawmemf Region ypos ;
:------------------------------------------------------
: RULES
:------------------------------------------------------

:Block 0 - creates preliminary classification rules,
convert data to fznums

:rule r0
rule block 0 (goal Moves input data to "Region",
converts to fuzzy numbers)
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IF (in Data frame = <F> AND rnum = <N> AND area = <A> AND
xbar = <X>

AND ybar = <Y> border = <B>)
THEN

make Region frame = <F> rnum = <N> area = <A> 10 0.1
xbar = <X> 20 0 ybar = <Y> 20 0 border = "<B>" ;

:rule r1
rule block 0 (goal Creates preliminary classification rules)
IF (in Classdef goal = <G> AND size= <S> AND x = <X> AND y = <Y>

AND class = <CL> AND borderop = <OP> AND border =
<B>)

THEN
write ’Creating rule for classification as <CL>\n’ ,
rule block 2 (goal <G>)
IF (in Region <S> AND <X> AND <Y> AND border <OP> "<B>")
THEN

in 1 class is <CL> ; :fire rule off ;

:------------------------------------------------------
:Block 1 - fuzzifies data, writes out data converted to
fuzzy numbers

:rule r2
rule block 1 (goal Fuzzifies area, xbar, ybar into size,
xpos, ypos)
IF (in Region area = <A> AND xbar = <X> AND ybar = <Y>)
THEN

fuzzify 1 size <A> ,
fuzzify 1 xpos <X> ,
fuzzify 1 ypos <Y> ;

:rule r3
rule block 1 (goal Writes out data converted to fuzzy
numbers)
IF (in Region rnum = <N>)
THEN

write ’Raw data for region <N> (fuzzy numbers) -\n’ ,
prmem 1 rnum area xbar ybar ;

:------------------------------------------------------
:Block 2 rules write out fuzzy sets, get preliminary
classifications
:classification rules created by r1
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:rule r4
rule block 2 (goal Writes out fuzzy sets)
IF (in Region rnum = <N>)
THEN
write ’Fuzzy sets for region <N>:\n’ ,
prmem 1 rnum size xpos ypos ;

:------------------------------------------------------
:Block 3 - writes preliminary classifications to screen

:rule r5
rule block 3 (goal Writes preliminary classifications to
screen)
IF (in Region frame = <FR> AND rnum = <N>)
THEN
write ’Preliminary classifications for frame <FR>

region <N>:\n’ ,
prmem 1 rnum class ;

:------------------------------------------------------
:Block 4 - commences resolution of contradictions

:The following rules reduce confidences, using non-
monotonic logic.

:Fuzzy set memberships are modified directly. This
overrides the Fuzzy Truth

:Maintenance System, and permits setting memberships to
any value.

:rule r6
rule block 4 (goal Rule out LA+LV if both LV and LA+LV
and also LA)

IF (in Region frame = <FR> AND rnum = <N1> AND class is
LV AND class is LA+LV)
(in Region frame = <FR> AND rnum = <N2> AND rnum <>

<N1> AND class is LA)
THEN
reset,
write ’Frame <FR> Region <N1> - Ruling out LA+LV in

favor of LV and LA\n’,
in 1 class is LA+LV = 0 ;

:rule r7
rule block 4 (goal Rule out RA+RV if both RV and RA+RV
and also RA)
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IF (in Region frame = <FR> AND rnum = <N1> AND class is
RV AND class is RA+RV)

(in Region frame = <FR> AND rnum = <N2> AND rnum <>
<N1> AND class is RA)

THEN
reset ,
write ’Frame <FR> Region <N1> - Ruling out RA+RV in

favor of RV and RA\n’ ,
in 1 class is RA+RV = 0 ;

:------------------------------------------------------
:Block 5 - more conflict resolution

:rule r8
rule block 5

(goal Rule out LV if both LV and LA+LV, no LA else
LA+LV would be cleared)
IF (in Region frame <F> rnum <N> class is LV AND class is
LA+LV)
THEN

reset ,
write ’Frame <F> rnum <N> - Ruling out LV in favor of

LA+LV\n’ ,
in 1 class is LV = 0 ;

:rule r9
rule block 5

(goal Rule out RV if both RV and RA+RV, no RA else
RA+RV would be cleared)
IF (in Region frame <F> rnum <N> class is RV AND class is RA+RV)
THEN

reset ,
write ’Frame <F> rnum <N> - Ruling out RV in favor of

RA+RV\n’ ,
in 1 class is RV = 0 ;

:------------------------------------------------------
:Block 6 - more conflict resolution

:rule r10
rule block 6 (goal checks for LA+LV and RV in same
region)
IF (in Region frame <F> rnum <N> class is LA+LV AND class
is RV)

(in Region frame <F> class is RV AND rnum <> <N>)
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THEN
write ’Frame <F> rnum <N> - Ruling out RV in favor of

LA+LV\n’ ,
in 1 class is RV = 0 ;

:rule r11
rule block 6 (goal checks for RA+RV and LV in same
region)
IF (in Region frame <F> rnum <N> class is RA+RV AND class
is LV)
(in Region frame <F> class is LV AND rnum <> <N>)

THEN
write ’Frame <F> rnum <N> - Ruling out LV in favor of
RA+RV\n’,
in 1 class is RV = 0 ;

:rule r12
rule block 6
(goal checks for RA+RV and LA+LV in same region, RA+RV

in another)
IF (in Region frame <F> rnum <N> class is RA+RV AND class
is LA+LV)
(in Region frame <F> class is RA+RV AND rnum <> <N>)

THEN
write ’Frame <F> rnum <N> - Ruling out RA+RV in favor
of LA+LV\n’,
in 1 class is RA+RV = 0 ;

:rule r13
rule block 6
(goal checks for RA+RV and LA+LV in same region, LA+LV
in another)

IF (in Region frame <F> rnum <N> class is RA+RV AND class
is LA+LV)
(in Region frame <F> class is LA+LV AND rnum <> <N>)

THEN
write ’Frame <F> rnum <N> - Ruling out LA+LV in favor
of RA+RV\n’,
in 1 class is LA+LV = 0 ;

:------------------------------------------------------
:Block 7 rules check that all chambers are present,
:store final classification

:rule r14
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rule block 7 (goal Checks for LA, LV, RA, RV in same frame)
IF (in Region frame = <FR> AND class is LA)

(in Region frame = <FR> AND class is LV)
(in Region frame = <FR> AND class is RA)
(in Region frame = <FR> AND class is RV)

THEN
reset ,
write ’LA, LV, RA, RV present in frame <FR>\n’,
in 1 final = "LA" ,
in 2 final = "LV" ,
in 3 final = "RA" ,
in 4 final = "RV" ;

:rule r15
rule block 7 (goal Checks for LA, LV, RA+RV in same frame)
IF (in Region frame = <FR> AND class is LA)

(in Region frame = <FR> AND class is LV)
(in Region frame = <FR> AND class is RA+RV)

THEN
reset ,
write ’LA, LV, RA+RV present in frame <FR>\n’ ,
in 1 final = "LA" ,
in 2 final = "LV" ,
in 3 final = "RA+RV" ;

:rule r16
rule block 7 (goal Checks for LA+LV, RA, RV in same frame)
IF (in Region frame = <FR> AND class is LA+LV)

(in Region frame = <FR> AND class is RA)
(in Region frame = <FR> AND class is RV)

THEN
reset ,
write ’LA+LV, RA, RV present in frame <FR>\n’ ,
in 1 final = "LA+LV" ,
in 2 final = "RA" ,
in 3 final = "RV" ;

:rule r17
rule block 7 (goal Checks for LA+LV, RA+RV in same frame)
IF (in Region frame = <FR> AND class is LA+LV)

(in Region frame = <FR> AND class is RA+RV)
THEN

reset ,
write ’LA+LV, RA+RV present in frame <FR>\n’ ,
in 1 final = "LA+LV" ,
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in 2 final = "RA+RV" ;

:rule r18
rule block 7 (goal Checks for LA+LV+RA+RV)
IF (in Region frame = <FR> AND class is LA+LV+RA+RV)
THEN
reset ,
write ’LA+LV+RA+RV present in frame <FR>\n’ ,
in 1 final = "LA+LV+RA+RV" ;

:rule r19
rule block 7 (goal Checks for ARTIFACT)
IF (in Region frame = <FR> AND class is ARTIFACT)
THEN
reset ,
write ’ARTIFACT present in frame <FR>\n’ ,
in 1 final = "ARTIFACT" ;

:rule r20
rule block 7 (goal Checks for LUNG)
IF (in Region frame = <FR> AND class is LUNG)
THEN
reset ,
write ’LUNG present in frame <FR>\n’ ,
in 1 final = "LUNG" ;

:------------------------------------------------------
:Block 8 rules write classifications to screen in serial
mode

:rule r21
rule block 8 (goal Writes final classifications to
screen )
IF ( in Region frame <FR> AND rnum <N> AND final <CK> )
( in Print rnum = <N> )

THEN
write ’Final crisp classification for frame <FR>
region <N>\: <CK>\n’, in 2 rnum = (<N> + 1) ;

:rule r22
rule block 8 (goal Checks for regions with no final
classification)
IF ( in Region frame <FR> AND rnum <N> AND final.cf 0 )
( in Print rnum = <N> )
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THEN
in 2 rnum = (<N> + 1) ,
error ’No final classification for frame <FR> region
<N>!\n’ ;

:------------------------------------------------------
:Block 20 - block firing control

:rule r23
rule 1 20 (goal Enables blocks sequentially)
:rconf is 1 so rule 30 will fire before rule r31
IF ( in Enable block = <B> AND block < 8 )
THEN

reset ,
write ’Turning off rule block <B>, activating next
block\n’ ,
in 1 block ( <B> + 1 ) ,
fire block <B> off ,
fire block (<B> + 1) on ;

:rule r24
rule rconf 0 block 20 (goal Switches to serial mode when
block 6 fires)
:rconf is 0 so this is the last rule to fire in block 20
IF ( in Enable block = 7 )
THEN

reset ,
make Print rnum = 1 ,
message "Switching from parallel to serial mode for

printout\n",
serial ;

:++++++++++++++++++++++++++++++++++++++++++++++++++++++

: INPUT DATA

:turn all rules off
fire all off ;
:take in input data
message "Reading run-specific data from
blackboard..\n" ;
transfer -conf Data from echodata.dat;
:transfer data to file with confidences so it can be
viewed with FLEDIT
transfer Data to echoin.dat;
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:enabled rule block control
make Enable block 0 ;
:turn on block 0, block 20
fire block 0 on ;
fire block 20 on ;
:bring in data for classification rule generation
message "Reading data from blackboard to generate
classification rules..\n";
transfer Classdef from classes.dat ;
string = "Ready to create new rules and process input
data -\n" ;
string + "A lot of output will scroll by - you can scroll
up and view" ;
string + "it in detail by selecting Cancel from any
message box\, " ;
string + "then entering ‘resume\;‘when ready to proceed.\n" ;
message "<string>";
:run block 0
run 1;
:turn new rules off
fire block 2 off ;
:run blocks 1 and 2
message "Ready to print and fuzzify input data -\n" ;
run 1 ;
message "Input data after fuzzification -\n" ;
run 1 ;
:run blocks 3, 4 and 5
message "Preliminary classifications -\n" ;
run 1 ;
message "Resolving contradictory classifications -\n" ;
run 3 ;
:run block 7
message "Check all heart chambers present -\n" ;
run 1 ;
message "Getting final classifications\n" ;
run ;
message "ECHO.PAR finished.\n" ;
exit ;
::*****************************************************
:******************************************************
:program FUZZIFY.PAR - fuzzifies
:******************************************************

thresh 1 ;
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declare Data x flt size fzset ( small medium large ) ;

memfunct Data size normal
small -1e6 1 2
medium 1 2 2 3
large 2 3 1e6 ;

:rule r0
rule (goal Fuzzifies x into fuzzy set size)
IF (in Data x = <X> AND x <= 3.5)
THEN

message ’Fuzzifying <X>\n’,
fuzzify 1 size <X>,
fire block 0 off,
fire block 1 on;

:Permit firing rules with zero confidence in fuzzy set
member TestFsetOff;

rule block 1 (goal Prints out results of fuzzification)
IF (in Data x = <X> AND size.small = <S> AND size.medium = <M>

AND size.large = <L>)
THEN
message ’<X> fuzzified: small <S> medium <M> large <L>\n’,
reset,
in 1 x = (<X> + 0.5),
fire block 1 off,
fire block 0 on;

make Data ^x 0.5;

string = "Program fuzzify.PAR\n";
string + "We have only two rules, one to fuzzify, one to

print results.\n";
string + "Rule r0 will fuzzify several values of an

input, x, " ;
string + "Into a fuzzy set size with three members\:

small, medium, large.\n" ;
message "<string>" ;
prule r0 ;
fire block 1 off ;
message ’Here are the membership functions for fuzzy set
size:\n’ ;
drawmemf Data size ;
message ’Ready to run\n’ ;
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:run ;
:message ’Fuzzification demonstration finished.\n’ ;
:exit ;
:******************************************************

Guess.fps: try to guess a number.

declare Guess
x int ;

:rule r0
rule (goal Guess too low)
IF (x < 6)
THEN
write "Your guess is too low - guess again\n",
delete 1;

:rule r1
rule (goal Guess too high)
IF (x > 6)
THEN
write "Your guess is too high guess again\n",
delete 1;

:rule r2
rule (goal Guess correct - stop)
IF (x = 6)
THEN
write "Your guess is correct! Thanks for the game\n",
stop;

:rule r3
rule (goal Input guess)
IF (x = 0)
THEN
write "What is your guess for the number ?\n",
read 1 x;

:******************************************************
:program HANOI.FPS - solves Tower of Hanoi problem
recursively
:uses rule confidences to control rule firing sequence ;
:if rule r2 and rule r4 concurrently fireable, r2 fires first.
:(rule confidences override normal MEA algorithm for
sequencing rules)
:******************************************************
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message "Loading program hanoi.fps...\n";

declare Spindles
n int :number of disks to be moved
s str :source spindle
d str :destination spindle
t str :temporary spindle
rtn int; :pointer for rule(s) to be executed next

:******************************************************

:rule r0
rule rconf 0 ( goal Inputs number of disks to move )
IF ( in Spindles n.cf = 0 )
THEN

reset,
input "Tower of Hanoi - how many disks to move (0 to
quit)?\n" 1 n ,
make Spindles s = "S1" t = "S2" d = "S3" rtn = 1 ;

:rule r1
rule rconf 1000 (goal Quits on zero numbers of disks to
move )
IF ( in Spindles n = 0 )
THEN

message nocancel "Thanks for the game.\n" ,
exit ;

:rule r2
rule rconf 1000 ( goal Fires if only one disk to move )
IF ( in Spindles n = 1 AND s = <S> AND d = <D> )
THEN

reset ,
write 12 "*** move <S> to <D> ***\n" ,
delete 1 ;

:rule r3
rule rconf 999 (goal Fires if NDisk > 1\; makes r2 or r4
fireable)
IF ( in Spindles n > 1 AND n = <N> AND s = <S> AND d = <D>

AND t = <T>
AND rtn = 1 )

THEN
reset ,
:save Spindles for return to rule 4 later
in 1 rtn = 2 ,
:first recursive call
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make Spindles n = ( <N> - 1 ) s = "<S>" d = "<T>"
t = "<D>" rtn = 1;

:rule r4
rule rconf 999 ( goal Fires after r3 if NDisk > 1to move
- recursive )
IF ( in Spindles n = <N> AND n > 1 AND s = <S> AND d = <D>
AND t = <T> AND rtn = 2 )
THEN
reset ,
write 12 "*** move <S> to <D> ***\n" ,
:second recursive call
in 1 n = ( <N> - 1 ) s = "<T>" d = "<D>" t = "<S>" rtn = 1 ;

:******************************************************
make Spindles s = "S1" t = "S2" d = "S3" rtn = 1 ;
:******************************************************

string =
"We have some disks of different diameters with holes ";

string +
"bored through the center, and three vertical spindles." ;

string +
"The disks are loaded onto one spindle in order of size, ";

string +
"with the largest at the bottom. \n" ;

string +
"The problem is to move the disks from spindle #1 to #3\,";

string +
"one disk at a time, never placing a larger disk on a

smaller. \n";
string +
"HANOI will solve this problem recursively, in that

rules ";
string +
"make themselves refireable until a desired state is ";

string +
"reached. Rule weights ensure that rules fire in the ";

string +
"proper sequence. HANOI.FPS has one rule for input,";

string +
" one to quit, and only three to solve the problem. \n" ;

message "<string>" ;
message "Ready to run...\n" ;
:run ;
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:******************************************************
:program HANOI.PAR - solves Tower of Hanoi problem
recursively
:uses rule confidences to control rule firing sequence ;
:if rule r2 and rule r4 concurrently fireable, r2 fires
first.
:(rule confidences override normal MEA algorithm for
sequencing rules)
:******************************************************

message "Loading program hanoi.par...\n" ;

declare Spindles
n int :number of disks to be moved
s str :source spindle
d str :destination spindle
t str :temporary spindle
rtn int ; :pointer for rule(s) to be executed next

declare True;

:******************************************************
:rule r0
rule (goal Declares itself in parallel mode, enables
block 1, switches to serial mode)
IF (True)
THEN
message "First rule firing, block 0 - mode parallel.\n
Switching to serial mode",
fire block 0 off,
fire block 1 on,
serial;

:rule r1
rule rconf 0 block 1 (goal Inputs number of disks to
move)
IF (in Spindles n.cf = 0)

THEN
reset,
input "r0 - Tower of Hanoi - how many disks to move (0
to quit)?\n" 1 n,
make Spindles s = "S1" t = "S2" d = "S3" rtn = 1,
debug 4;
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:rule r2
rule block 1 (goal Quits on zero numbers of disks to
move)
IF (in Spindles n = 0)
THEN
message nocancel "r1 - Thanks for the game.\n",
fire block 1 off,
fire block 2 on,
parallel;

:rule r3
rule block 1 (goal Fires if only one disk to move)
IF (in Spindles n = 1 AND s = <S> AND d = <D>)
THEN
reset,
write "r2 - move <S> to <D>\n",
delete 1;

:rule r4
rule rconf 999 block 1 (goal Fires if NDisk > 1\; makes
r2 or r4 fireable)
IF (in Spindles n > 1 AND n = <N> AND s = <S> AND d = <D>
AND t = <T>
AND rtn = 1)

THEN
debug 0,
reset,
write "r3 - modifying Spindles\n",
:save Spindles for return to rule 4 later
in 1 rtn = 2,
:first recursive call
make Spindles n = (<N> - 1) s = "<S>" d = "<T>"

t = "<D>" rtn = 1;

:rule r5
rule rconf 999 block 1 (goal Fires after r3 if NDisk > 1
to move - recursive)

IF (in Spindles n = <N> AND n > 1 AND s = <S> AND d = <D>
AND t = <T> AND rtn = 2)

THEN
reset,
write "r4 - move <S> to <D>\n",
:second recursive call
in 1 n = (<N> - 1) s = "<T>" d = "<D>" t = "<S>" rtn = 1;
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:rule r6
rule block 2 (goal Announce return to parallel mode)
IF (True)
THEN
message "Back to parallel mode in block 2";
halt;

:******************************************************
make Spindles s = "S1" t = "S2" d = "S3" rtn = 1;
make True;
:******************************************************

string =
"We have some disks of different diameters with holes ";

string +
"bored through the center, and three vertical spindles. ";

string +
"The disks are loaded onto one spindle in order of
size, ";

string +
"with the largest at the bottom. \n";

string +
"The problem is to move the disks from spindle #1 to #3\,";

string +
"one disk at a time, never placing a larger disk on a
smaller. \n";

string +
"HANOI will solve this problem recursively, in that

rules ";
string +
"make themselves refireable until a desired state is ";

string +
"reached. Rule weights ensure that rules fire in the ";

string +
"proper sequence. HANOI.FPS has one rule for input,";

string +
" one to quit, and only three to solve the problem. \n";

message "<string>";
fire all off;
fire block 0 on;
message "Ready to run...\n";
:run;
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:Exercise Imply.fps - calculates truth value of P->Q for
several implication operators.

declare Data P flt Q flt Imply1 flt Imply2 flt Imply3
flt;

:rule r0
rule (goal Input initial truth values)
IF (in Data P.cf = 0)
THEN

input "Enter truth value of P" 1 P,
input "Enter truth value of Q, negative to quite" 1 Q;

:rule r1
rule (goal Calculate truth value of P implies Q for P <= Q)
IF (in Data P = <P> AND Q = <Q> AND Q >= 0 AND P <= <Q>
AND Imply1.cf = 0)
THEN
in 1 Imply1 = 1 Imply2 = (min(1, 1 - <P> + <Q>)) Imply3

= (max(1 - <P>, min(<P>, <Q>)));

:rule r2
rule (goal Calculate truth value of P->Q for P > Q)
IF (in Data P = <P> AND Q = <Q> AND Q >= 0 AND P > <Q> AND
Imply1.cf = 0)
THEN
in 1 Imply1 = 0 Imply2 = (min(1, 1 - <P> + <Q>)) Imply3

= (max((1 - <P>), min(<P>, <Q>)));

:rule r3
rule (goal Quit on negative Q)
IF (in Data Q < 0) THEN exit;
:rule r4
rule (goal Print results)
IF (in Data P = <P> AND Q = <Q> AND Imply1 = <I1> AND
Imply2 = <I2> AND Imply3 = <I3>)
THEN

message "P <P> Q <Q> \nP->Q(1) <I1> : P->Q(2)<I2> :
P->Q(3) <I3>",
delete 1,
make Data;

make Data;
string = "Program IMPLY.FPS to evaluate implications is

ready to run.\n";
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string + "Comparison of different fuzzy implication
operators:\n";

string + "See Klir and Yuan(1995, p. 309).\n";
string + "1) P->Q = 1 if P <= Q, else = 0 (Gaines-

Rescher)\n";
string + "2) P->Q = min(1, 1 - P + Q) (Lukasiewicz)\n";
string + "3) P->Q = max(1 - P, min(P, Q)) (Early Zadeh)";
message "<string>";

REM Sample fuzzy control program IRC.bas
REM Intersection rule matrix
REM 9 rules

DECLARE FUNCTION MIN (A, B)
DECLARE FUNCTION MAX (A, B)
DECLARE FUNCTION Process (Y0, Z, dT)
DECLARE FUNCTION Pause ()

REM****************************************************
REM IRC.BAS: Explanatory information

CLS
PRINT "Sample fuzzy control program with non-linear process"
PRINT "Uses conventional IRC method with nine rules"
PRINT
PRINT "System output is Y"
PRINT "inputs: error E, fuzzy set Error (Negative Zero

Positive)"
PRINT "rate R, fuzzy set Rate (Negative Zero Positive)"
PRINT "Control value is Z"
PRINT "Control increment DZ, fuzzy set Control (Negative,

Zero, Positive)"
PRINT "Dt is time interval between input sample value"
PRINT "Press any key to continue..."
WHILE INKEY$ = "": WEND

REM****************************************************
PRINT "Default membership functions"

PRINT
PRINT "ERROR:"
PRINT "1.0 n z p"
PRINT " - n z z p"
PRINT " - n z z p"
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PRINT " - n z z p"
PRINT " - n z z p n = Negative"
PRINT "0.5 + n z z p z = Zero"
PRINT " - n z z p p = Positive"
PRINT " - zn pz"
PRINT " - z n p z"
PRINT " - z n p z"
PRINT "0.0 +zpzpzpzpz+ppppppppp+nnnnnnnnn+znznznznz+"
PRINT " 2LLEZ LLEZ 0 ULEZ 2ULEZ"
PRINT " (-10) (-5) 0 (5) (10) (Defaults)"
PRINT
PRINT "Press any key to continue..."
WHILE INKEY$ = "": WEND

PRINT "RATE:"
PRINT "1.0 +nnnnnnnnnn z ppppppppppp"
PRINT " - n z z p"
PRINT " - n z z p"
PRINT " - n z z p"
PRINT " - n z z p n = Negative"
PRINT "0.5 + n z z = Zero"
PRINT " - z n p z p = Positive"
PRINT " - z n p z"
PRINT " - z z n p z"
PRINT " - z n p z"
PRINT "0.0 +zpzpzpzpz+ppppppppp+nnnnnnnnn+znznznznz+"
PRINT " 2LLRZ LLRZ 0 ULRZ 2ULRZ"
PRINT " (-20) (-10) 0 (10) (20) (Defaults)"
PRINT
PRINT "Press any key to continue..."
WHILE INKEY$ = "": WEND

PRINT "CONTROL"
PRINT "1.0 nb ns z ps pb"
PRINT " nb ns z ps pb"
PRINT " nb ns z ps pb"
PRINT " nb ns z ps pb"
PRINT " nb ns z ps pb"
PRINT "0.5 nb ns z ps pb"
PRINT " nb ns z ps pb"
PRINT " nb ns z ps pb"
PRINT " nb ns z ps pb"
PRINT " nb ns z ps pb"
PRINT "0.0 |---—|-+-----+--–-+-|----|"
PRINT " -100 -60 0 60 100 (Defaults)"
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PRINT
PRINT "Press any key to continue..."
WHILE INKEY$ = "": WEND

REM****************************************************
REM Define fuzzy sets

TYPE OutputError
E AS SINGLE
Negative AS SINGLE
Zero AS SINGLE
Large AS SINGLE

END TYPE

TYPE Rate
R AS SINGLE
Slow AS SINGLE
Medium AS SINGLE
Fast AS SINGLE

END TYPE

TYPE Control
NB AS SINGLE
NBval AS SINGLE
NS AS SINGLE
NSval AS SINGLE
Z AS SINGLE
Zval AS SINGLE
PS AS SINGLE
PSval AS SINGLE
pb AS SINGLE
PBval AS SINGLE
Dz AS SINGLE

END TYPE
REM****************************************************
REM Input data

PRINT
PRINT "Input parameters"
PRINT "<ENTER> to select default value"
PRINT
INPUT "Lower limit for Error.Zero (-5)"; LLEZ
IF LLEZ = 0 THEN LLEZ = -5
INPUT "Upper limit for Error.Zero (5)"; ULEZ
IF ULEZ = 0 THEN ULEZ = 5
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INPUT "Lower limit for Rate.Zero (-10)"; LLRZ
IF LLRZ = 0 THEN LLRZ = -10
INPUT "Upper limit for Rate.Zero (10)"; ULRZ
IF ULRZ = 0 THEN ULRZ = 10

INPUT "Control value for Negative Big, NB (-100)";
Control.NBval
IF Control.NBval = 0 THEN Control.NBval = -100
INPUT "Control value for Negative Small, NS (-60)";
Control.NSval
IF Control.NSval = 0 THEN Control.NSval = -60
Control.Z = 0
INPUT "Control value for Positive Small, PS (60)";
Control.PSval
IF Control.PSval = 0 THEN Control.PSval = 60
INPUT "Control value for Positive Big, PB (100)";
Control.PBval
IF Control.PBval = 0 THEN Control.PBval = 100

INPUT "Time interval between input samples (1)"; dT
IF dT = 0 THEN dT = 1
T = 0
INPUT "Process setpoint value (15)"; SetPoint
IF SetPoint = 0 THEN SetPoint = 15
INPUT "Initial process output Y (10)"; Y0
IF Y0 = 0 THEN Y0 = 10
REM For dYdT = 0, sqr(Z) = .1 * Y0^1.5, Z = Y0^3 / 100
Z = Y0 ^ 3 / 100
PRINT "Initial control value"; Z

Start:
REM Get input values
REM Get next value of process output
Y = Process(Y0, Z, dT)
OutputError.E = Y - SetPoint
OutputRate.R = (Y - Y0) / dT
Y0 = Y
A$ = "T ###.# Process ##.# Control ##.## Error ##.## Rate
##.##"
PRINT USING A$; T; Y; Z; OutputError.E; OutputRate.R
PRINT "Press any key to continue, Q to quit"

DO
X$ = UCASE$(INKEY$)

LOOP WHILE X$ = ""
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IF X$ = "Q" THEN
END

END IF

REM****************************************************
REM Fuzzify inputs
IF OutputError.E < 2 * LLEZ THEN

OutputError.Negative = 1
OutputError.Zero = 0
OutputError.Positive = 0

ELSEIF OutputError.E < LLEZ THEN
OutputError.Negative = (0 - OutputError.E) / (0 - 2 * LLEZ)
OutputError.Zero = 0
OutputError.Positive = 0

ELSEIF OutputError.E < 0 THEN
OutputError.Negative = (0 - OutputError.E) / (0 - 2 * LLEZ)
OutputError.Zero = (OutputError.E - LLEZ) / (0 - LLEZ)
OutputError.Positive = 0

ELSEIF OutputError.E < ULEZ THEN
OutputError.Negative = 0
OutputError.Zero = (ULEZ - OutputError.E) / (ULEZ - 0)
OutputError.Positive = (OutputError.E - 0) / (2 * ULEZ - 0)

ELSEIF OutputError.E < 2 * ULEZ THEN
OutputError.Negative = 0
OutputError.Zero = 0
OutputError.Positive = (OutputError.E - 0) / (2 * ULEZ - 0)

ELSE
OutputError.Negative = 0
OutputError.Zero = 0
OutputError.Positive = 1

END IF

IF OutputRate.R < LLRZ THEN
OutputRate.Negative = 1
OutputRate.Zero = 0
OutputRate.Positive = 0

ELSEIF OutputRate.R < 0 THEN
OutputRate.Negative = (OutputRate.R - 0) / (LLRZ - 0)
OutputRate.Zero = (OutputRate.R - LLRZ) / (0 - LLRZ)
OutputRate.Positive = 0

ELSEIF OutputRate.R < ULRZ THEN
OutputRate.Negative = 0
OutputRate.Zero = (ULRZ - OutputRate.R) / (ULRZ - 0)
OutputRate.Positive = (OutputRate.R - 0) / (ULRZ - 0)

ELSE
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OutputRate.Negative = 0
OutputRate.Zero = 0
OutputRate.Positive = 1

END IF

REM****************************************************

REM Rules

REM Rule matrices
’Conventional Rules
’Output rate:
’PB = Positive Big
’PS = Positive Small
’NS = Negative Small
’NB = Negative Big
’ InputRate
’InputError | Neg | Zer | Pos |
’ ______|_____|_____|_____|
’ Neg___|_PB__|_PS__|_Zero|
’ Zer___|_PS__|_Zer_|_NS__|
’ Pos___|_Zer_|_NS__|_NB__|
’
’Combs method rules
’Output rate:
’Pos = Positive
’ZER = Zero
’Neg = Negative
’ Input Error or Input Rate
’ | Neg | Zer | Pos |
’ |_____|_____|_____|
’ |_Pos_|_Zer_|_Neg_|

’Simplify symbols
IF OutputError.Negative > 0 AND OutputRate.Negative > 0
THEN
PB1 = MIN(OutputError.Negative, OutputRate.Negative)

ELSE
PB1 = 0

END IF

IF OutputError.Negative > 0 AND OutputRate.Zero > 0 THEN
PS1 = MIN(OutputError.Negative, OutputRate.Zero)

ELSE
PS1 = 0

312 APPENDIX

TEAM LinG - Live, Informative, Non-cost and Genuine !



END IF

IF OutputError.Negative > 0 AND OutputRate.Positive > 0 THEN
Z1 = MIN(OutputError.Negative, OutputRate.Positive)

ELSE
Z1 = 0

END IF

IF OutputError.Zero > 0 AND OutputRate.Negative > 0 THEN
PS2 = MIN(OutputError.Zero, OutputRate.Negative)

ELSE
PS2 = 0

END IF

IF OutputError.Zero > 0 AND OutputRate.Zero > 0 THEN
Z2 = MIN(OutputError.Zero, OutputRate.Zero)

ELSE
Z2 = 0

END IF

IF OutputError.Zero > 0 AND OutputRate.Positive > 0 THEN
NS1 = MIN(OutputError.Zero, OutputRate.Positive)

ELSE
NS1 = 0

END IF

IF OutputError.Positive > 0 AND OutputRate.Negative > 0 THEN
Z3 = MIN(OutputError.Negative, OutputRate.Negative)

ELSE
Z3 = 0

END IF

IF OutputError.Positive > 0 AND OutputRate.Zero > 0 THEN
NS2 = MIN(OutputError.Positive, OutputRate.Zero)

ELSE
NS2 = 0

END IF

IF OutputError.Positive > 0 AND OutputRate.Positive > 0
THEN

NB1 = MIN(OutputError.Negative, OutputRate.Positive)
ELSE

NB1 = 0
END IF
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REM****************************************************

REM OR rule consequents
REM Here we are effectively firing the rules in parallel,
REM taking max of consequent values

Control.NB = NB1

Control.NS = MAX(NS1, NS2)

Control.Z = MAX(Z1, Z2)
Control.Z = MAX(Control.Z, Z3)
Control.Z = MAX(Control.Z, Z4)

Control.PS = MAX(PS1, PS2)

Control.PB = PB1

REM****************************************************

REM Defuzzify
REM For simplicity, weighted average of singletons
REM Normalize memberships

sum = Control.NB + Control.NS + Control.Z + Control.PS +
Control.PB

Dz = Control.NBval * Control.NB + Control.NSval *
Control.NS

Dz = Dz + Control.PSval * Control.PS + Control.PBval *
Control.PB

REM Integrate control
T = T + dT
Z = Z + Dz * dT

GOTO Start

FUNCTION MAX (A, B)
IF A > B THEN MAX = A ELSE MAX = B
END FUNCTION

FUNCTION MIN (A, B)
IF A < B THEN MIN = A ELSE MIN = B

END FUNCTION
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FUNCTION Process (Y0, Z, dT)
dYdT = -.1 * Y0 ^ 1.5 + SGN(Z) * SQR(ABS(Z))
REM For dYdT = 0, sqr(Z) = .1 * Y0^1.5, Z = Y0^3 / 100
Process = Y0 + dYdT * dT

END FUNCTION

:Program IRIS.PAR to classify iris data

thresh 1;
linear;

declare Data N int PL flt PW flt SL flt SW flt orig str;

declare Iris
N int
PetalL fzset (setosa versicolor virginica)
PetalW fzset (setosa versicolor virginica)
SepalL fzset (setosa versicolor virginica)
SepalW fzset (setosa versicolor virginica)
species fzset (setosa versicolor virginica)
orig str
final str;

:memfunctions by mid=(least+most)/2, bottom=2*least -
mid, top = 2*most-mid
:least = smallest measurement; most = largest measurement
memfunct Iris PetalL linear

setosa 3.55 5.05 5.05 6.55
versicolor 3.85 5.95 5.95 8.05
virginica 3.40 6.40 6.40 9.40;

memfunct Iris PetalW linear
setosa 1.25 3.35 3.35 5.45
versicolor 1.30 2.72 2.72 4.15
virginica 1.40 3.00 3.00 4.60;

memfunct Iris SepalL linear
setosa 0.55 1.45 1.45 2.35
versicolor 1.95 4.05 4.05 6.15
virginica 3.30 5.70 5.70 8.10;

memfunct Iris SepalW linear
setosa -0.15 0.35 0.35 0.85
versicolor 0.60 1.40 1.40 2.20
virginica 0.85 1.95 1.95 3.05;

:rule r0
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rule block 0 (goal Make instances of iris, holds fuzzy
sets)
IF (in Data N = <N> AND orig = <ORIG>)
THEN

:write "Making instance of specimen <N>\n",
make Iris N = <N> orig = "<ORIG>";

:rule r1
rule block 0 (goal Fuzzify input data)
IF (in Data N = <N> AND PL = <PL> AND PW = <PW> AND SL =
<SL> AND SW = <SW>)

(in Iris N = <N>)
THEN

:write "Fuzzifying specimen <N> data\n",
fuzzify 2 PetalL <PL>,
fuzzify 2 PetalW <PW>,
fuzzify 2 SepalL <SL>,
fuzzify 2 SepalW <SW>,
fire block 0 off,
fire block 1 on;

:rule r2
rule block 1 (goal classify as setosa)
IF (in Iris N = <N> AND PetalL is setosa AND PetalW is setosa

AND SepalL is setosa AND SepalW is setosa)
THEN

:write "Classifying specimen <N> as setosa\n",
in 1 species is setosa,
in 1 final is "Iris-setosa",
fire block 1 off,
fire block 2 on;

:rule r3
rule block 1 (goal classify as versicolor)
IF (in Iris N = <N> AND PetalL is versicolor AND PetalW
is versicolor

AND SepalL is versicolor AND SepalW is
versicolor)
THEN

:write "Classifying specimen <N> as versicolor\n",
in 1 species is versicolor,
in 1 final is "Iris-versicolor",
fire block 1 off,
fire block 2 on;
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:rule r4
rule block 1 (goal classify as virginica)
IF (in Iris N = <N> AND PetalL is virginica AND PetalW is
virginica

AND SepalL is virginica AND SepalW is virginica)
THEN

:write "Classifying specimen <N> as virginica\n",
in 1 species is virginica,
in 1 final is "Iris-virginica",
fire block 1 off,
fire block 2 on;

:rule r5
rule block 2 (goal detect incorrect classifications)
IF (in Iris N = <N> AND final = <FL> AND orig = <ORIG>
AND final <> <ORIG>)
THEN

prmem 1,
message "Specimen <N> incorrect\: <FL> should be

<ORIG>\n";

:rule r6
rule block 2 (goal detect unclassified specimens)
IF (in Iris N = <N> AND species.setosa = 0 AND species.
versicolor = 0

AND species.virginica = 0)
THEN

message "Specimen <N> unclassified\n";

transfer -conf Data from myiris.dat;

fire all off;
fire block 0 on;
message "IRIS.PAR ready to run and classify 150 specimens";
message "Membership functions for petal length";
drawmemf Iris PetalL;
message "Membership functions for petal width";
drawmemf Iris PetalW;
message "Membership functions for sepal length";
drawmemf Iris SepalL;
message "Membership functions for sepal width";
drawmemf Iris SepalW;

message "Block 0 - creating instances of data\n";
run 1;
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message "Block 0 - fuzzifying data\n";
run 1;
message "Block 1 - classifying data\n";
run 1;
message "Block 2 - detecting errors\n";
run 1;
message "Iris.par finished";
exit;

message "program IrisCombs.PAR to classify iris data by
Combs method";

thresh 1;

declare IrisData N int PL flt PW flt SL flt SW flt orig
str;

declare True;

declare Iris
N int
PetalL fzset (setosa versicolor virginica)
PetalW fzset (setosa versicolor virginica)
SepalL fzset (setosa versicolor virginica)
SepalW fzset (setosa versicolor virginica)
setosaConf int
versicolorConf int
virginicaConf int
species fzset (setosa versicolor virginica)
orig str
final str;

:memfunctions are designed to place minimum and maximum
of training set at 0.5

:memfunctions by mid (1.0) = median, bottom (0.0 for
linear distribution) = 2*least - mid, top = 2*most-mid

:least = smallest measurement; most = largest measurement
in training set
memfunct Iris PetalL normal
: Training set even numbers

setosa 3.60 5.00 5.00 6.40
versicolor 3.90 5.90 5.90 7.50
virginica 4.70 6.50 6.50 9.30;
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memfunct Iris PetalW normal
: Training set even numbers

setosa 1.30 3.30 3.30 5.50
versicolor 1.80 2.80 2.80 4.00
virginica 1.40 3.00 3.00 4.60;

memfunct Iris SepalL normal
: Training set even numbers

setosa 0.70 1.50 1.50 1.90
versicolor 2.40 4.20 4.20 6.00
virginica 4.50 5.30 5.30 8.10;

memfunct Iris SepalW normal
: Training set even numbers

setosa 0.00 0.20 0.20 1.00
versicolor 0.70 1.30 1.30 2.10
virginica 1.00 2.00 2.00 3.00;

thresh;
:rule r0
rule block 0 (goal Make instances of iris, holds fuzzy sets)
IF (in IrisData N = <N> AND orig = <ORIG>)
THEN

make Iris N = <N> orig = "<ORIG>" setosaConf = 0
versicolorConf = 0 virginicaConf = 0;

:rule r1
rule block 0 (goal Fuzzify input data)
IF (in IrisData N = <N> AND PL = <PL> AND PW = <PW> AND
SL = <SL> AND SW = <SW> AND tt = <TT>)

(in Iris N = <N>)
THEN

write "Fuzzifying tt <TT>\n",
fuzzify 2 PetalL <PL>,
fuzzify 2 PetalW <PW>,
fuzzify 2 SepalL <SL>,
fuzzify 2 SepalW <SW>,
fire block 0 off,
fire block 1 on;

:++++++++++++++++++++++++++++++++++++++++++++++++++++++

:rule r2
rule block 1 (goal classify as setosa by PL)
IF (in Iris PetalL is setosa
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AND setosaConf = <SetCf>)
THEN
write "Classifying as setosa by PL conf $<SetCf> pconf
<pconf>\n",
modify 1 setosaConf = ($<SetCf> + <pconf> / 4);

:rule r3
rule block 1 (goal classify as setosa by PW)
IF (in Iris PetalW is setosa
AND setosaConf = <SetCf>)

THEN
write "Classifying as setosa by PW conf $<SetCf> pconf
<pconf>\n",
modify 1 setosaConf = ($<SetCf> + <pconf> / 4);

:rule r4
rule block 1 (goal classify as setosa by SL)
IF (in Iris SepalL is setosa
AND setosaConf = <SetCf>)

THEN
write "Classifying as setosa by SL conf $<SetCf> pconf
<pconf>\n",
modify 1 setosaConf = ($<SetCf> + <pconf> / 4);

:rule r5
rule block 1 (goal classify as setosa by SW)
IF (in Iris SepalW is setosa
AND setosaConf = <SetCf>)

THEN
write "Classifying as setosa by SW conf $<SetCf> pconf
<pconf>\n",
modify 1 setosaConf = ($<SetCf> + <pconf> / 4);

:rule r6
rule block 1 (goal classify as versicolor by PL)
IF (in Iris PetalL is versicolor
AND versicolorConf = <SetCf>)

THEN
write "Classifying as versicolor by PL conf $<SetCf>
pconf <pconf>\n",
modify 1 versicolorConf = ($<SetCf> + <pconf> / 4);

:rule r7
rule block 1 (goal classify as versicolor by PW)
IF (in Iris PetalW is versicolor
AND versicolorConf = <SetCf>)
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THEN
write "Classifying as versicolor by PW conf $<SetCf>
pconf <pconf>\n",
modify 1 versicolorConf = ($<SetCf> + <pconf> / 4);

:rule r8
rule block 1 (goal classify as versicolor by SL)
IF (in Iris SepalL is versicolor

AND versicolorConf = <SetCf>)
THEN

write "Classifying as versicolor by SL conf $<SetCf>
pconf <pconf>\n",
modify 1 versicolorConf = ($<SetCf> + <pconf> / 4);

:rule r9
rule block 1 (goal classify as versicolor by SW)
IF (in Iris SepalW is versicolor

AND versicolorConf = <SetCf>)
THEN

write "Classifying as versicolor by SW conf $<SetCf>
pconf <pconf>\n",
modify 1 versicolorConf = ($<SetCf> + <pconf> / 4);

:rule r10
rule block 1 (goal classify as virginica by PL)
IF (in Iris PetalL is virginica

AND virginicaConf = <SetCf>)
THEN

write "Classifying as virginica by PL conf $<SetCf>
pconf <pconf>\n",
modify 1 virginicaConf = ($<SetCf> + <pconf> / 4);

:rule r11
rule block 1 (goal classify as virginica by PW)
IF (in Iris PetalW is virginica

AND virginicaConf = <SetCf>)
THEN

write "Classifying as virginica by PW conf $<SetCf>
pconf <pconf>\n",
modify 1 virginicaConf = ($<SetCf> + <pconf> / 4);

:rule r12
rule block 1 (goal classify as virginica by SL)
IF (in Iris SepalL is virginica

AND virginicaConf = <SetCf>)
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THEN
write "Classifying as virginica by SL conf $<SetCf>
pconf <pconf>\n",
modify 1 virginicaConf = ($<SetCf> + <pconf> / 4);

:rule r13
rule block 1 (goal classify as virginica by SW)
IF (in Iris SepalW is virginica
AND virginicaConf = <SetCf>)

THEN
write "Classifying as virginica by SW conf $<SetCf>
pconf <pconf>\n",
modify 1 virginicaConf = ($<SetCf> + <pconf> / 4);

:rule r14
rule block 1 (goal Activate next block)
IF (True) THEN fire block 1 off, fire block 2 on;

:++++++++++++++++++++++++++++++++++++++++++++++++++++++

:rule r15
rule block 2 (goal Select max confidence = average
confidence, Combs OR)
IF (in Iris setosaConf = <SetCF> AND versicolorConf =
<VerCF> AND virginicaConf = <VirCF>)
THEN
in 1 species.setosa = <SetCF> species.versicolor =
<VerCF> species.virginica = <VirCF>;

:rule r16
rule block 2 (goal activate next block)
IF (True) THEN
fire block 2 off,
fire block 3 on,
TMSon;

:++++++++++++++++++++++++++++++++++++++++++++++++++++++

:rule r17
rule block 3 (goal Set final classification to setosa)
IF (in Iris species is setosa)
THEN in 1 final is "Iris-setosa";

:rule r18
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rule block 3 (goal Set final classification to
versicolor)
IF (in Iris species is versicolor)
THEN in 1 final is "Iris-versicolor";

:rule r19
rule block 3 (goal Set final classification to
virginica)
IF (in Iris species is virginica)
THEN in 1 final is "Iris-virginica";

:rule r20
rule block 3 (goal activate next block)
IF (True) THEN

fire block 3 off,
fire block 4 on;

:++++++++++++++++++++++++++++++++++++++++++++++++++++++

:rule r21
rule block 4 (goal detect incorrect classifications)
IF (in Iris N = <N> AND final = <FL> AND orig = <ORIG>
AND final <> <ORIG>)
THEN

prmem 1,
message "Specimen <N> incorrect\:<FL> should be<ORIG>\n" ;

:rule r22
rule block 4 (goal detect unclassified specimens)
IF (in Iris N = <N> AND final.cf = 0 OR (species.setosa =
0 AND species.versicolor = 0 AND species.virginica = 0))

(in IrisData N = <N>)
THEN

prmem 1,
prmem 2,
message "Specimen <N> unclassified\n";

:++++++++++++++++++++++++++++++++++++++++++++++++++++++

:transfer -conf IrisData from iristest.dat;
transfer -conf IrisData from Iris.dat;
fire all off;
fire block 0 on;
TMSoff;
TestFsetOff;
make True;
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message "Block 0 first creates memory instances of each
specimen";
run 1;
message "Block 0 now fuzzifies the input data";
run 1;
message "Block 1 gets preliminary classifications for
each specimen";
run 1;
message "Block 2 aggregates preliminary
classifications";
run 1;
message "Block 3 gets final classifications";
run 1;
message "Block 42 checks for incorrect classifications
and specimens not classified";
run 1;
message "IRIS.PAR finished";
exit;

: program LOGIST.fps - solves differential equation of
logistic growth.

declare Population
size flt :population size
K flt :carrying capacity
r flt :growth rate of individual
T flt :time
TMax flt : max time allowed for continued run
dT flt :delta time
dPdT flt :growth rate of population
terminate flt; :minimum population growth rate to

continue run

:rule r0
rule (goal Calculate population growth rate dPdT at
time T)
IF (in Population size = <size> AND K = <K> AND r = <r>
AND T = <T> AND dT = <dT> AND dPdT.cf = 0)
THEN
write "Time <T> population <size>\n",
in 1 dPdT = (<r> * <size> * <dT> * (1 - <size> / <K>)),
in 1 T = (<T> + <dT>);

:rule r1
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rule (goal Calculate population size at T+dT from size
at T recursively)
IF (in Population size = <size> AND K = <K> AND r = <r>
AND T = <T> AND dT = <dT> AND dPdT = <dPdT>

AND terminate < <dPdT> AND TMax > <T>)
THEN

in 1 size = (<size> + <dPdT> * <dT>),
in 1 dPdT.cf = 0;

:rule r2
rule (goal Terminate run)
IF (in Population (T = <T> AND TMax < <T>) OR (dPdT =
<dPdT> AND terminate > <dPdT>))
THEN

write "Termination criterion met - ending run\n",
halt;

make Population size = 1000 K = 10000 r = 1 T = 0 TMax =
10 dT = 1 terminate = 0.01;

: program LOGIST.par - solves differential equation of
logistic growth.

declare Population
size flt :population size
K flt :carrying capacity
r flt :growth rate of individual
T flt :time
TMax flt : max time allowed for continued run
dT flt :delta time
dPdT flt :growth rate of population
terminate flt; : minimum population growth rate to

continue run

:rule r0
rule (goal Calculate population growth rate dPdT at
time T)
IF (in Population size = <size> AND K = <K> AND r = <r>
AND T = <T> AND dT = <dT> AND dPdT.cf = 0)
THEN

write "Time <T> population <size>\n",
in 1 dPdT = (<r> * <size> * <dT> * (1 - <size> / <K>)),
in 1 T = (<T> + <dT>);

:rule r1
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rule (goal Calculate population size at T+dT from size
at T recursively)
IF (in Population size = <size> AND K = <K> AND r = <r>
AND T = <T> AND dT = <dT> AND dPdT = <dPdT>

AND terminate < <dPdT> AND TMax > <T>)
THEN

in 1 size = (<size> + <dPdT> * <dT>),
in 1 dPdT.cf = 0;

:rule r2
rule (goal Terminate run)
IF (in Population (T = <T> AND TMax < <T>) OR (dPdT =
<dPdT> AND terminate > <dPdT>))
THEN

write "Termination criterion met - ending run\n",
exit;

make Population size = 1000 K = 10000 r = 1 T = 0 TMax =
10 dT = 1 terminate = 0.01;

:******************************************************
:* MC.FPS - missionaries and cannibals
:******************************************************
: RULES OF GAME:
: -- can never be more cannibals than missionaries in the

boat or on either shore, except
: -- all cannibals and no missionaries is OK.
: i.e. miss >= cannibals, OR
: miss = 0.
: -- must be at least two in boat if L to R, or one if

R to L.
:------------------------------------------------------
: ALGORITHM - basically a simulation.
:
: DATA ELEMENTS: "boat" holds missionaries, cannibals, total,
: boat state: "L" when docked at left bank, "R" when docked
: at right bank, "LR" when going from left to right, and
: "RL when going from right to left.
:
: "left" holds missionaries, cannibals, total on left bank;
: "right" holds missionaries, cannibals, total on right bank.
:
: "temp" is temporary storage for finding out what bank
totals
: will be after the boat is unloaded, so we can check whether a
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: missionary will get eaten if we unload.
:
: "max" holds input data: total number of missionaries and
: cannibals, and max number allowed in the boat.
:
: PROCEDURE: first input data (rule r0), then put all the
: missionaries and cannibals on the left bank, nobody in
: boat, nobody on right bank (rule r1).
:
: Now load as many as possible up to the boat limit on
: the left bank (rules r2, r3, r4). Check to make sure
: that nobody will get eaten on the left bank or in the
: boat (rules r5,r6). If this test is passed, sail from
: left to right; if not, forget it and backtrack (rules
: r7, r8).
:
: After we have sailed from the left bank, see what the
: right bank totals will be if we unload (rule r19). If
: nobody will get eaten, unload (rule r20); if somebody
: will get eaten, forget it and backtrack (rule r21).
: Check if we have solved the problem (rule r22). If not:
:
: Now load as few as possible up to the boat limit on the
: right bank (rules r9, r10, r11). Check to make sure
: that nobody will get eaten on the right bank or in the
: boat (rules r12, r13). If this test is passed, sail
: from right to left; if not, forget it and backtrack
: (rules r14, r15).
:
: After we have sailed from the right bank, see what the
: left bank totals will be if we unload (rule r16). If
: nobody will get eaten, unload (rule r17); if somebody
: will get eaten, forget it and backtrack (rule r18).
: Continue until problem is solved.
:******************************************************

message ’loading program MC.FPS...\n’ ;

declare Boat
miss int
cann int
total int
state str;

declare Left
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miss int
cann int
total int ;

declare Right
miss int
cann int
total int ;

declare Temp
miss int
cann int
total int ;

declare Max
miss int
cann int
boat int
total int ;

:++++++++++++++++++++++++++++++++++++++++++++++++++++++
: INITIALIZE

:rule r0
rule (goal Get numbers of missionaries = cannibals, max
boat will hold)
IF (in Max miss.cf = 0)
THEN
cls ,
input "Enter number miss (= # cann)" 1 miss ,
input "Enter max in boat" 1 boat ;

:rule r1
rule 999 (goal Get total number of people, initialize
people on banks, boat)
IF (in Max miss = <M> AND total.cf = 0)
THEN
reset ,
write ’rule r1 - initializing\n’ ,
in 1 cann = <M> total = (2 * <M>) ,
make Boat miss = 0 cann = 0 total = 0 state = "L",
make Left miss = <M> cann = <M> total = (2 * <M>) ,
make Right miss = 0 cann = 0 total = 0 ;

:++++++++++++++++++++++++++++++++++++++++++++++++++++++
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: LOAD BOAT LEFT

:rule r2
rule 0 (goal Loading boat from left - first load a
missionary)
IF ( in Boat miss = 0 AND cann = 0 AND state = "L")

( in Left miss = <LM> AND total = <LT>)
THEN

reset ,
write ’rule r2 - loading first missionary on left\n’ ,
in 1 miss = 1 total = 1 ,
in 2 miss = (<LM> - 1) total = (<LT> - 1) ;

:rule r3
rule 0 (goal Load another missionary on left)
IF (in Max boat <MX>)

(in Left miss = <LM> AND cann = <LC> AND miss > 0 AND
total = <LT>)
(in Boat state = "L" AND miss = <BM> AND cann = <BC>
AND total = <BT>

AND miss > 0 total < <MX>)
THEN

reset ,
write ’rule r3 - loading missionary on left\n’ ,
in 2 miss = (<LM> - 1) total = (<LT> - 1) ,
in 3 miss = (<BM> + 1) total = (<BT> + 1) ;

:rule r4
rule (goal Load a cannibal on left)
IF ( in Max boat <MX>)
( in Left miss = <LM> AND cann = <LC> AND cann > 0 AND
total = <LT>)
( in Boat state = "L" AND miss = <BM> AND cann = <BC>
AND total = <BT>

AND miss > 0 AND total < <MX>)
THEN

reset ,
write ’rule r4 - loading cannibal on left\n’ ,
in 2 cann = (<LC> - 1) total = (<LT> - 1) ,
in 3 cann = (<BC> + 1) total = (<BT> + 1) ;

:------------------------------------------------------

: CHECK READY TO SAIL FROM LEFT BANK
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:rule r5
rule 999
(goal Missionaries >= cannibals on left\, shore and
boat-ready to sail)
IF ( in Max boat <MX>)
( in Boat state = "L" AND miss = <BM> AND cann = <BC>
AND total = <BT> AND miss >= <BC> AND total >= 2 AND
total <= <MX>)

( in Left miss = <LM> AND cann = <LC> AND total = <LT>
AND miss >= <LC>)

THEN
reset ,
write ’Boat holds miss <BM> cann <BC> total <BT>\n’ ,
write ’leaving miss <LM> cann <LC> total <LT>\n’ ,
message ’rule r5 - ready to sail from left\n’ ,
in 2 state = "LR",
in 3 total = <LT> ;

:rule r6
rule 999 (goal Miss 0 on shore miss >= cann on boat,
ready to sail from left)
IF ( in Max boat <MX>)
( in Boat state = "L" AND miss = <BM> AND cann = <BC>
AND total = <BT> AND miss >= <BC> AND total >= 2 AND
total <= <MX>)

( in Left miss = 0 AND cann = <LC> AND total = <LT>)
THEN
reset ,
write ’Boat holds miss <BM> cann <BC> total <BT>\n’ ,
write ’leaving miss 0 cann <LC> total <LT>\n’ ,
message ’rule r6 - ready to sail from left\n’ ,
in 2 state = "LR";

: SEE IF NEED TO BACKTRACK
: if backtracking is necessary, forget it: delete boat, left

:rule r7
rule (goal Missionaries < cannibals, <> 0 on shore, boat
up to max, backtrack)
IF ( in Max boat <MX>)
( in Boat state = "L" AND total = <MX>)
( in Left cann = <LC> AND miss < <LC> AND miss > 0)

THEN
warning ’rule r7 - miss will get eaten on left on

shore\, backtracking\n’ ,
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delete 2 ,
delete 3 ;

:rule r8
rule (goal Miss < cann, <> 0 in boat, boat up to max,
backtrack)
IF ( in Max boat <MX>)

( in Boat state = "L" AND cann = <BC> AND miss < <BC>
AND total = <MX>)
( in Left TT <TT>)

THEN
warning ’rule r8 - miss will get eaten on left in
boat\, backtracking\n’ ,
delete 2 ,
delete 3 ;

:++++++++++++++++++++++++++++++++++++++++++++++++++++++
: LOAD BOAT RIGHT

:rule r9
rule 999 (goal Loading first missionary on right)
IF ( in Boat miss = 0 AND cann = 0 AND state = "R")

( in Right miss = <RM> AND total = <RT>)
THEN
write ’rule r9 - loading first missionary on right\n’ ,
in 1 miss = 1 total = 1 ,
in 2 miss = (<RM> - 1) total = (<RT> - 1) ;

:rule r10
rule 999 (goal Load another missionary on right)
IF ( in Max boat <MX>)
( in Right miss = <RM> AND cann = <RC> AND miss > 0 AND
total = <RT>)
(in Boat state = "R" AND miss = <BM> AND cann = <BC>
AND total = <BT>

AND total < <MX>)
THEN

reset ,
write ’rule r10 - loading missionary on right\n’ ,
in 2 miss = (<RM> - 1) total = (<RT> - 1) ,
in 3 miss = (<BM> + 1) total = (<BT> + 1) ;

:rule r11
rule 999 (goal Load a cannibal from right)
IF ( in Max boat <MX>)
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( in Right miss = <RM> AND cann = <RC> AND cann > 0 AND
total = <RT>)
( in Boat state = "R" AND miss = <BM> AND cann = <BC>
AND total = <BT>

AND miss > 0 AND total < <MX>)
THEN
reset ,
write ’rule r11 - loading cannibal on right\n’ ,
in 2 cann = (<RC> - 1) total = (<RT> - 1) ,
in 3 cann = (<BC> + 1) total = (<BT> + 1) ;

:------------------------------------------------------

: CHECK READY TO SAIL FROM RIGHT BANK

:rule r12
rule (goal Everything OK on right, ready to sail)
IF ( in Max boat <MX>)
( in Boat state = "R" AND miss = <BM> AND cann = <BC>
AND total = <BT> AND miss >= <BC> AND total >= 1 AND

total <= <MX>)
(in Right miss = <RM> AND cann = <RC> AND total = <RT>
AND miss >= <RC>)

THEN
write ’Boat holds miss <BM> cann <BC> total <BT>\n’ ,
write ’leaving miss <RM> cann <RC> total <RT>\n’ ,
message ’rule r14 - ready to sail from right\n’ ,
in 2 state = "RL";

:rule r13
rule (goal Miss 0 on shore miss >= cann on boat, ready to
sail from right)
IF ( in Max boat <MX>)
( in Boat state = "R" AND miss = <BM> AND cann = <BC>
total = <BT> AND miss >= <BC> AND total >= 1 AND total
<= <MX>)

( in Right miss = 0 AND cann = <RC> AND total = <RT>)
THEN
write ’Boat holds miss <BM> cann <BC> total <BT>\n’ ,
write ’leaving miss 0 cann <RC> total <RT>\n’ ,
message’rule r13 - ready to sail from right\n’ ,
in 2 state = "RL" ;

: SEE IF NEED TO BACKTRACK
: if backtracking is necessary, forget it: delete boat, right
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:rule r14
rule (goal Miss will get eaten on right, backtrack)
IF ( in Max boat <MX>)

( in Boat state = "R" AND total = <MX>)
( in Right cann = <RC> AND miss < <RC> AND miss > 0)

THEN
warning ’rule r14 - miss will get eaten on right on
shore\, backtracking\n’ ,
delete 2 ,
delete 3 ;

:rule r15
rule (goal Miss will get eaten on right in boat, backtrack)
IF ( in Max boat <MX>)

( in Boat state = "R" AND cann = <BC> AND miss < <BC>
AND total = <MX>)
( in Right miss = <RM>)

THEN
warning ’rule r15 - miss will get eaten on right in
boat\, backtracking\n’ ,
delete 2 ,
delete 3 ;

:----------------------------------------------------- -
: UNLOAD ON LEFT BANK

:rule r16
rule (goal Check new left bank totals to see if unloading
is possible)
IF ( in Boat state = "RL"

miss = <BM> AND cann = <BC> AND total = <BT>)
( in Left miss = <LM> AND cann = <LC> AND total = <LT>)

THEN
write ’rule r16 - checking new bank totals on left\n’ ,
make Temp miss = (<BM> + <LM>)

cann = (<BC> + <LC>)
total = (<BT> + <LT>) ;

:rule r17
rule (goal OK, unload on left bank)
IF ( in Temp miss = <TM> AND cann = <TC> AND cann <= <TM>
AND total = <TT>)

( in Boat state = "RL")
( in Left miss = <LM> AND cann = <LC> AND total = <LT>)

THEN
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write ’rule r17 - unloading on left\n’ ,
write ’Trip complete - now miss <TM> cann <TC> on
L bank\n’ ,
delete 1 ,
in 2 state = "L" miss = 0 cann = 0 total = 0 ,
in 3 miss = <TM> cann = <TC> total = <TT> ;

:rule r18
rule (goal NG, cannot unload on left bank, backtrack and
forget try)
IF ( in Temp miss = <TM> AND cann > <TM>)
( in Boat state = "RL" )
( in Right TT <TT>)

THEN
warning’ruler18-cannotunloadonleft\,backtracking\n’,
delete 1 ,
delete 2 ,
delete 3 ;

:----------------------------------------------------- -
: UNLOAD ON RIGHT BANK

:rule r19
rule (goal Check new right bank totals to see if
unloading is possible)
IF ( in Boat state = "LR" AND miss = <BM> AND cann = <BC>
AND total = <BT>)
( in Right miss = <RM> AND cann = <RC> AND total =

<RT>)
THEN
write ’rule r19 - checking new bank totals on right\n’ ,
make Temp miss = (<BM> + <RM>)

cann = (<BC> + <RC>)
total = (<BT> + <RT>) ;

:rule r20
rule (goal OK, unload on right bank)
IF ( in Temp miss = <TM> AND cann = <TC> AND cann <= <TM>
AND total = <TT>)
( in Boat state = "LR" )
( in Right miss = <RM> AND cann = <RC> AND total =

<RT>)
THEN
write ’rule r20 - unloading on right\n’ ,
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write ’Trip complete - now miss <TM> cann <TC> on
R bank\n’ ,
delete 1 ,
in 2 state = "R" miss = 0 cann = 0 total = 0 ,
in 3 miss = <TM> cann = <TC> total = <TT> ;

:rule r21
rule (goal NG, can\’t unload on right bank, backtrack)
IF ( in Temp miss = <TM> AND cann > <TM>)

( in Boat state = "LR")
( in Left total = <LT>)

THEN
warning ’rule r21 - cannot unload on right\, backtracking\n’,
delete 1 ,
delete 2 ,
delete 3 ;

:++++++++++++++++++++++++++++++++++++++++++++++++++++++

: CHECKS

:rule r22
rule (goal Check if boat will hold two or more)
IF ( in Max boat < 2)
THEN

error ’cannot do it - boat must hold two or more\n’ ,
delete 1 ,
make Max ;

:rule r23
rule (goal Check if boat holds more than 3 if 3+ cannibals)
IF ( in Max boat <= 3 AND cann >= 3)

( Boat)
( Left)
( Right)

THEN
error ’cannot do it - boat not big enough\n’ ,
delete 1 ,
delete 2 ,
delete 3 ,
delete 4 ,
make Max ;

:rule r25
rule ( goal Check if finished)
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IF ( in Boat state = "R")
( in Right total = <RT>)
( in Max total = <RT>)

THEN
reset ,
message nocancel ’Missionaries and Cannibals
finished\n’ ,
exit ;

:------------------------------------------------------
cls ;
string = "Missionaries and Cannibals problem –\n" ;
string + "On one side of a river, we have some missionaries ";
string + "and cannibals. We also have a boat of limited ";
string + "capacity.Theproblemistogeteverybodyfromthe";
string + "left to the right bank without any missionaries ";
string + "being eaten.\n" ;
message "<string>";
string = "RULES OF GAME -\n" ;
string + "- can never be more cannibals than missionaries

in the ";
string + "boat or on either shore, except\n" ;
string + "- all cannibals and no missionaries is OK.\n\n";
message "<string>";
string = "MC.FPS. basically a simulation of the problem,

illustrates ";
string + "the use of backtracking in the a depth-first

search of a ";
string + "decision tree.\n" ;
string + "When it is time to load a person onto the boat,

two rules ";
string + "are concurrently fireable. One loads a

missionary, and ";
string + "one loads a cannibal. One is selected for

firing, and the ";
string + " other is stacked. If the rule chosen for

firing turns out ";
string + "to be the wrong one, the other rule is popped

off the ";
string + "stack and fired.\n" ;
message "<string>";

make Max ;

message "Ready to run\n" ;
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:run ;
:******************************************************

:******************************************************
:program NODES.PAR - finds best route between nodes in a
network
:******************************************************
declare Pair

node1 str
node2 str
dist int ;

declare Howfar
node1 str
node2 str ;

declare Thisfar
node1 str
node2 str
path str
dist int ;

declare Check :used to indicate bad node entered
OK str ;

:++++++++++++++++++++++++++++++++++++++++++++++++++++++
:Block 0 - writes available nodes

:rule r0
rule ( goal Print out nodes for user choices )
IF ( in Pair node1 = <C1> AND node2 = <C2> AND dist = <D> )
THEN

write ’route <C1> to <C2> <D> miles\n’ ,
fire block 0 off ,
fire block 1 on ;

:++++++++++++++++++++++++++++++++++++++++++++++++++++++
:Block 1 - sets up run

:rule r1
rule block 1 (goal Inputs starting and destination nodes)
IF ( in Howfar node1.cf = 0 )
THEN

input "From node (NULL to quit) ?\n" 1 node1 lcase ,
input "to node (NULL to quit) ?\n" 1 node2 lcase ;
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:rule r2
rule block 1 ( goal Quits on null entry )
IF ( in Howfar node1 = "" )
THEN

message nocancel ’Terminating nodes.PAR\n’,
stop ;

:rule r3
rule block 1 ( goal Makes instances of data with nodes
reversed )
IF ( in Pair node1 = <C1> AND node2 = <C2> AND dist = <D> )
THEN

make Pair node1 "<C2>" node2 "<C1>" dist <D> ,
fire rule r3 off ;

:rule r4
ruleblock1(goalSeesifdirectpathfromstarttodestination)
IF ( in Howfar node1 = <C1> AND node2 = <C2> )

( in Pair node1 = <C1> AND node2 = <C2> AND dist = <D> )
THEN

fire block 1 off ,
fire block 5 on ;

:rule r5
rule block 1 ( goal Gets all direct paths from start to
another node )
IF ( in Howfar node1 = <C1> AND node2 = <C2> )

( in Pair node1 = <C1> AND node2 = <C3> AND dist = <D> )
( in Pair node1 = <C3> AND node2 = <C1> AND dist = <D> )

THEN
make Thisfar node1 "<C1>" node2 "<C3>" path
"<C1>-<C3>" dist <D> ,
delete 2 ,
delete 3 ;

:rule r6
rule block 1 (goal Checks both input nodes on list)
IF ( in Howfar node1 = <C1> AND node2 = <C2> AND node1 <>
<C2> )

( in Pair node1 = <C1> )
( in Pair node1 = <C2> )
( in Check )

THEN
in 4 OK = "y" ;
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:rule r7
rule block 1 ( goal Block firing control )
IF ( in Howfar node1 = <C1> AND node2 = <C2> AND node1 <> "" )
THEN

fire rule r3 on ,
fire block 1 off ,
fire block 2 on ;

:++++++++++++++++++++++++++++++++++++++++++++++++++++++
:Block 2 - resets if bad node entry, else proceeds

:rule r8
rule block 2 ( goal Warns of nodes not on list, restarts
program )
IF ( in Check OK = "n" )

( Howfar )
THEN

error ’node not in data base - reenter\n’ ,
in 2 node1.cf = 0 node2.cf = 0 ,
fire block 2 off ,
fire block 0 on ,
transfer -conf all from nodes.inp ;

:rule r9
rule block 2 ( goal Deletes nodes data for rerunnning
program )
IF ( in Check OK = "n" )

( Pair )
THEN

delete 2 ;

:rule r10
rule block 2 ( goal If nodes OK, enables next block )
IF ( in Check OK = "y" )
THEN

fire block 2 off ,
fire block 3 on ;

:++++++++++++++++++++++++++++++++++++++++++++++++++++++
:Block 3 - starts finding path - goes to block 6 if finished,
:else on to block 4

:rule r11
rule block 3 ( goal Extends paths to one more node )

APPENDIX 339

TEAM LinG - Live, Informative, Non-cost and Genuine !



IF ( in Thisfar node1 = <C1> AND node2 = <C2> AND path =
<P> AND dist = <D1> )
( in Pair node1 = <C2> AND node2 = <C3> AND node2 <>
<C1> AND dist = <D2> )
( in Pair node1 = <C3> AND node2 = <C2> )
( in Howfar node1.cf > 0 )

THEN
make Thisfar node1 "<C1>" node2 "<C3>" path "<P>-<C3>"
dist ( <D1> + <D2> ),
delete 1 ,
delete 2 ,
delete 3 ,
fire block 3 off ,
fire block 4 on ;

:rule r12
rule block 3 ( goal Fires if finished, enables rule block 5 )
IF ( in Howfar node1.cf = 0 )
THEN

fire block 3 off ,
fire block 6 on ;

:++++++++++++++++++++++++++++++++++++++++++++++++++++++
:Block 4 - second in pathway chain - goes on to block 5
:rule r13
rule block 4 ( goal Gets rid of longer paths start to
destination )
IF ( in Thisfar node1 = <C1> AND node2 = <C2> AND dist =
<D> )

( in Thisfar node1 = <C1> AND node2 = <C2> AND path =
<P> AND dist > <D> )
( in Howfar node1 = <C1> AND node2 = <C2> )

THEN
write ’shorter path than <P>\, deleting...’ ,
delete 2 ;

:rule r14
rule block 4 ( goal Disables block 3, enables block 4
unless finished )
IF ( in Howfar node1.cf > 0 )
THEN

in 1 ,
fire block 4 off ,
fire block 5 on ;
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:++++++++++++++++++++++++++++++++++++++++++++++++++++++
:Block 5 - last in pathway chain - goes back to block 3

:rule r15
rule block 5 ( goal Fires if destination reached )
IF ( in Thisfar node1 = <C1> AND node2 = <C2> AND path =
<P> AND dist = <D> )

( in Howfar node1 = <C1> AND node2 = <C2> )
THEN

message ’<D> miles <C1> to <C2> path <P>\n’ ,
in 2 node1.cf = 0 ;

:rule r16
rule block 5 ( goal Block firing control -
disables block 5, enables block 3 )
IF ( Howfar )
THEN

fire block 5 off ,
fire block 3 on ;

:++++++++++++++++++++++++++++++++++++++++++++++++++++++

:rule r17
rule block 6 ( goal Deletes data element This far when
finished )

( Thisfar )
THEN

delete 1 ;

:rule r18
rule block 6 ( goal Re-reads node data after finishing a
run )

( Howfar )
( Check )

THEN
transfer -conf all from cities.inp ,
in 2 OK "n" ,
fire block 6 off ,
fire block 0 on ;

:rule r19
rule block 6 ( goal Deletes modified node data after
finishing one run )

( Pair )
THEN
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delete 1 ;

:++++++++++++++++++++++++++++++++++++++++++++++++++++++
transfer -conf all from cities.inp;
make Howfar ;
make Check OK = "n" ;
fire all off ;
fire block 0 on ;
string = "Program nodes to get best route between

nodes.\n" ;
string + "Best route involves (first) fewest number of

intermediate nodes,";
string + "Shortest distance to break ties.";
message "<string>";
message "node-to-node routes are\:\n" ;
run ;

:******************************************************
:program NUMBERS.FPS for Boolean tests on two scalar numbers
:******************************************************
write ’compiling program numbers.fps...\n’ ;

:DECLARATIONS

declare Numbers
num1 flt
num2 flt ;

:------------------------------------------------------

:RULES

:rule r0
rule rconf 0 (goal Inputs numbers to be compared.)
IF (in Numbers num1.cf = 0)
THEN

message nocancel ’Enter two numbers to be compared\,
0 0 to quit.’ ,
reset ,
input "First number?" 1 num1,
input "Second number?" 1 num2,
make Numbers ;

:rule r1
rule (goal Tests for zeroes, quits.)
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IF (in Numbers num1 = 0 AND num2 = 0)
THEN

message nocancel ’Terminating NUMBERS.FPS.’ ,
stop ;

:rule r2
rule (goal Tests for equality.)
IF (in Numbers num1 = <N1> AND num2 = <N2> AND num2 =
<N1> AND num1 > 0)
THEN

message ’<N1> equals <N2>’,
delete 1 ;

:rule r3
rule (goal Tests for N1 < N2.)
IF (in Numbers num1 = <N1> AND num2 = <N2> AND num1 < <N2>)
THEN

message ’<N1> less than <N2>’ ,
delete 1 ;

:rule r4
rule (goal Tests for N1 > N2.)
IF (in Numbers num1 = <N1> AND num2 = <N2> AND num1 > <N2>)
THEN

message ’<N1> greater than <N2>’ ,
delete 1 ;

:------------------------------------------------------

:MAKES
make Numbers ;

string = "NUMBERS.FPS does Boolean comparison of two
numbers, num1 and num2, ";

string + "for num1 = num2, num1 > num2 or num1 < num2.\n\n" ;
string + "Here is an extremely simple program,

illustrating ";
string + "basic principles of a rule-based data-driven

system. ";
string + "After you have run the program, look it over in

the ";
string + "TFLOPSW editor.\n\n";
string + "If you like, comment out the run command by

placing a colon ";
string + "in front, thus - ‘\:run‘. You can then enter

‘prstack\;‘ to see ";
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string + "which rules are fireable\; ‘prdata\;‘ to
inspect the data\; and ";
string + "‘run 1\;‘ to execute one rule-firing step.\n\n";
string + "ready to run..." ;
message "<string>";
:run ;

:******************************************************

:******************************************************
:program PAVLOV1.PAR - Classical conditioning
:conditions neutral stimulus to aversive stimulus or
:positive reward by adding data to S/R pair database
:learns by adding stimulus-response pairs to database
:******************************************************

message "Compiling program PAVLOV1.PAR ...\n";

:MEMORY LAYOUT

declare Input :accepts stimulus from keyboard
id str; :stimulus identification

declare Stimulus :record of stimuli
id str :stimulus ID
time int :time received
response str; :NULL (neutral), WHEE (positive),

: or RUN (aversive)

declare NewStimulus :record of new stimuli
id str :stimulus ID
time int :time when stimulus received
response str; :NULL (neutral), WHEE (positive),

: or RUN (aversive)

declare Pair :observed stimulus pair
id1 str :earlier stimulus (response "")
id2 str :later stimulus (response + or -)
T1 int :time of stimulus id1
T2 int :time of stimulus id2
TF int; :forget pair after this time

344 APPENDIX

TEAM LinG - Live, Informative, Non-cost and Genuine !



declare Responses :library of unconditioned stimuli
:and response types

id str :stimulus id
response str; :stimulus response

declare Time
time int :current time
pairTime int :pair with stimulus no earlier

:than this time
forget int; :forget anything earlier than

:this time

declare Count
id1 str
id2 str
N int
time int;

declare Conditioned :library of conditioned stimuli
id1 str :conditioned stimulus
id2 str :associated stimulus

response str; :stimulus response

declare Forget
delPT int :time interval allowed to pair

:incoming stimuli
delFT int; :time interval before stimulus &

:pairs forgotten

declare Fire :block firing control
block int;

:++++++++++++++++++++++++++++++++++++++++++++++++++++++
:Block 0 - stimulus input

:Block 1 - recognize stimulus and update data: put in :
: response if known,

APPENDIX 345

TEAM LinG - Live, Informative, Non-cost and Genuine !



: put into stimulus record, forget old data,
: print out conditioned response if there is one

:Block 2 - associate new stimulus with wired-in response
: :if appropriate

:Block 3 - reports response, forgets old data,
: :holds generated stimulus-response rules

:Block 4 - stimulus with known response paired with
: previous neutral stimulus, moves NewStimulus into
: short-term memory

:Block 5 - if latest stimulus paired with more than one
: neutral stimulus, select latest one

:Block 6 - counts recent stimulus pairs

:Block 7 - stops making new rule if one already exists

:Block 8 - generates new rule if ready

:Block 10 - sequences rule blocks

:++++++++++++++++++++++++++++++++++++++++++++++++++++++
:Block 0 - stimulus input

:rule r0
rule block 0 (goal Inputs stimulus and updates time)
IF (in Input id.cf = 0)
(in Time time = <T>)
(in Forget delPT = <PT> AND delFT = <FT>)

THEN
reset,
input "Enter any stimulus\, <CR> to quit\n" 1 id lcase,
in2time=(<T>+1)pairTime=(<T>-<PT>)forget=(<T>-<FT>);

:------------------------------------------------------
:Block 1 - recognize stimulus and update data: put in
: response if known,
: put into stimulus record, forget old data,
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: print out conditioned response if there is one

:rule r1
rule block 1 (goal Quits on null stimulus)
IF (in Input id = "")
THEN

message nocancel "Exiting PAVLOV --\n" ,
exit ;

:rule r2
rule block 1 (goal Puts input into new stimulus record)
IF (in Input id = <ID>)

(in Time time = <T>)
THEN

reset,
in 1 id.cf = 0 ,
make NewStimulus id = "<ID>" response = "" time = <T>;

:------------------------------------------------------
:Block 2 - associate new stimulus with wired-in response
: if appropriate

:rule r3
rule block 2 (goal Associate new stimulus with existing
response if appropriate)
IF (in NewStimulus id = <ID>)

(in Responses id = <ID> AND response = <R>)
THEN

in 1 response = "<R>";

:------------------------------------------------------
:Block 3 - reports response, forgets old data,

:rule r4
rule block 3 (goal Report response to unconditioned
stimulus)

IF (in Newstimulus id = <ID> AND response = <R> AND
response <> "")

THEN
message "<ID> - <R>!\n";
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:rule r5
rule block 3 ( goal Report response to conditioned
stimulus )
IF (in NewStimulus id = <ID> and response = "" )

(in Conditioned id1 = <ID> AND id2 = <ID2> AND
response = <R>)
THEN
message "<ID> - LOOK OUT - <ID2> coming\, <R>!\n";

:rule r6
rule block 3 ( goal Forget old stimuli )
IF (in Time forget = <TF>)

(in Stimulus time < <TF>)
THEN

delete 2;

:rule r7
rule block 3 ( goal Forget old stimulus pairs )
IF (in Time forget = <TF>)
(in Pair T2 < <TF>)

THEN
delete 2;

:rule r8
rule block 3 ( goal Forget how many pairs we had )
IF (in Time forget = <TF>)
(in Count time < <TF>)

THEN
delete 2;

:------------------------------------------------------
:Block 4 - stimulus with known response paired with
:previous neutral stimulus, moves NewStimulus into
:short-term memory

:rule r9
rule block 4 ( goal If response known, pair with
previous neutral stimuli )

IF (in Time time = <T> AND pairTime = <TP>)
(in NewStimulus id = <ID1> AND response = <R> AND

348 APPENDIX

TEAM LinG - Live, Informative, Non-cost and Genuine !



response <> "" AND time = <T1>)
(in Stimulus id = <ID2> AND response = "" AND time =
<T2> AND time >= <TP>)

THEN
reset ,
make Pair id1 = "<ID1>" id2 = "<ID2>" T1 = <T1> T2 = <T2>,
make Count id1 = "<ID1>" id2 = "<ID2>" N 0 time = <T>;

:rule r10
rule block 4 (goal Moves NewStimulus into short-term memory)
IF (in NewStimulus id = <ID> AND response = <R> AND time = <T>)
THEN
make Stimulus id = "<ID>" response = "<R>" time = <T>;

:------------------------------------------------------
:Block 5 - if latest stimulus paired with more than one
:neutral stimulus, select latest one

:rule r11
rule block 5 (goal Picks latest neutral stimulus paired

with current one)
IF (in Pair id1 = <ID1> AND id2 = <ID2> AND tt = <TT>)

(in Pair id1 = <ID1> AND id2 = <ID2> AND tt < <TT>)
THEN

delete 2;

:rule r12
rule block 5 (goal picks latest instance of count)
IF (in Count tt = <TT>)

(in Count N = <N> AND tt < <TT>)
THEN

in 1 N = <N>,
delete 2;

:rule r13
rule block 5 (goal Erase earlier instances of same
neutral stimulus )
IF (in Stimulus id is <ID> AND tt = <TT> )

(in Stimulus id is <ID> AND tt > <TT> )
THEN

delete 1;
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:------------------------------------------------------
:Block 6 - counts recent stimulus pairs

:rule r14
rule block 6 ( goal count number of recent stimulus pairs )
IF (in Count id1 = <ID1> AND id2 = <ID2> AND N = <N1>)
(in Pair id1 = <ID1> AND id2 = <ID2>)
(in NewStimulus id = <ID2>)

THEN
in 1 N ( $<N1> + 1 );

:------------------------------------------------------
:Block 7 - stops making new data if one already exists

:rule r15
rule block 7 ( goal Stops making new data if one already
made )
IF (in Conditioned id1 = <ID1> AND id2 = <ID2>)
(in Count id1 = <ID1> AND id2 = <ID2>)

THEN
delete 2;

:------------------------------------------------------
:Block 8 - generates new conditioned response if ready

:rule r16
rule block 8 (goal Adds response to library)
IF (in Count id1 = <ID1> AND id2 = <ID2> AND N > 2)

(in Responses id = <ID2> AND response = <R>)
THEN
reset,
message "New data\: conditioning <ID2> to <ID1>
response <R>\n",

delete 1,
make Conditioned id1 = "<ID1>" id2 = "<ID2>" response "<R>";

:rule r17
rule block 8 (goal delete instance of NewStimulus - no
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longer needed
IF (NewStimulus)
THEN

delete 1;

:------------------------------------------------------
:Block 10 - sequences rule blocks

:rule r18
rule block 10 (goal Sequences rule blocks for firing)
IF (in Fire block = <B> AND block < 8)
THEN

in 1 block = (<B> + 1),
fire block <B> off,
fire block (<B> + 1) on;

:rule r19
rule block 10 (goal Restarts rule firing sequence after
stimulus processed)
IF (in Fire block = 8)
THEN

in 1 block = 0,
fire block 8 off,
fire block 0 on;

:rule r20
rule block 10 (goal Fires once to report stimuli with
wired-in responses)
IF (in Responses id = <ID> AND response = <R>)
THEN

string + "Stimulus <ID> response <R>\n";

:++++++++++++++++++++++++++++++++++++++++++++++++++++++

:library of wired-in stimulus-response responses

make Responses id = "burn" response = "RUN";
make Responses id = "food" response = "WHEE";
make Responses id = "girls" response = "WHEE";
make Time time = 0;

string = "Simulation of pavlovian conditioning.\n\n";
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string + "A stimulus, with no response associated,
coming just ";

string + "before a second stimulus with known response,
tends ";

string + "to associate the known response to the first
stimulus. \n";

:write out stimulus library to screen

message "<string>";
fire all off;
fire block 10 on;
:write out stimuli with given response
string = "Known stimuli with wired-in responses -\n\n";
run;
message "<string>";
string = "There are two basically different approaches";
string + "to this problem. One way is to generate a";
string + "new rule if a new stimulus becomes";
string + "associated with a previous stimulus";
string + "with known response. \nWe could instead";
string + "modify the data base on which the rules ";
string + "operate\; that is what this program does. \n";
string + "Try seeing if the burnt child dreads the fire. ";
string + "For example, enter fire followed by burn three";
string + "or four times in a row, and see what happens. ";
string + "You can enter stimuli not in the library. \n";
message "<string>";

make Input;
make Fire block = 0;
make Forget delPT = 2 delFT = 12;
fire block 0 on;
message "PAVLOV.PAR Ready to run\n";
:run;
:******************************************************

:******************************************************
:program PAVLOV2.PAR - Classical conditioning
:conditions neutral stimulus to aversive stimulus or
:positive reward
:learns by ading new rule for repeated stimulus-
:response pair
:******************************************************

message ‘Compiling program PAVLOV2.PAR...\n’;
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:MEMORY LAYOUT

declare Input :accepts stimulus from keyboard
id str; :stimulus identification

declare Stimulus :record of stimuli
id str :stimulus ID
myTime int :myTime received
response str; :NULL (neutral), WHEE (positive),

or RUN (aversive)

declare NewStimulus :record of new stimuli
id str :stimulus ID
myTime int :myTime when stimulus received
response str; :NULL (neutral), WHEE (positive),

or RUN (aversive)

declare Pair :observed stimulus pair
id1 str :earlier stimulus (response "")
id2 str :later stimulus (response + or -)
T1 int :myTime of stimulus id1
T2 int :myTime of stimulus id2
TF int; :forget pair after this myTime

declare Wired-in :library of unconditioned stimuli
and response types

id str :stimulus id
response str; :stimulus response

declare Time :clock
myTime int :current myTime
pairTime int :pair with stimulus no earlier

:than this time
forget int; :forget anything earlier than this

:time

declare Count
id1 str
id2 str
N int
myTime int;

declare Rulemade
id1 str
id2 str;
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declare Forget
delPT int :Interval allowed to pair incoming stimuli
delFT int; :myTime interval before stimulus & pairs

:forgotten
declare Fire :block firing control
block int;

:++++++++++++++++++++++++++++++++++++++++++++++++++++++
:Block 0 - stimulus input
:Block 1 - recognize stimulus and update data: put in
: response if known,
: put into stimulus record, forget old data,
: print out conditioned response if there is one
:Block 2 - associate new stimulus with wired-in response
if appropriate
:Block 3 - reports response, forgets old data,
: holds generated stimulus-response rules
:Block 4 - stimulus with known response paired with
: previous neutral stimulus, moves NewStimulus into
: short-term memory
:Block 5 - if latest stimulus paired with more than one
: neutral stimulus, select latest one
:Block 6 - counts recent stimulus pairs
:Block 7 - stops making new rule if one already exists
:Block 8 - generates new rule if ready
:Block 10 - sequences rule blocks
:
:++++++++++++++++++++++++++++++++++++++++++++++++++++++
:Block 0 - stimulus input

:rule r0
rule block 0 (goal Inputs stimulus and updates myTime)
IF (in Input id.cf = 0 )
(in Time myTime = <T> )
(in Forget delPT = <PT> AND delFT = <FT> )

THEN
reset,
input "Enter any stimulus\, <CR> to quit\n" 1 id
lcase,

in 2 myTime = (<T> + 1) pairTime = (<T> - <PT>)
forget = (<T> - <FT>);

:------------------------------------------------------
:Block 1 - recognize stimulus and update data: put in
: response if known,
: put into stimulus record, forget old data,
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: print out conditioned response if there is one

:rule r1
rule block 1 (goal Quits on null stimulus)
IF (in Input id = "" )
THEN

message nocancel ‘Exiting PAVLOV2 --\n’,
keyboard,
exit;

:rule r2
rule block 1 (goal Puts input into new stimulus record)
IF (in Input id = <ID> )

(in Time myTime = <T> )
THEN

reset,
in 1 id.cf = 0,
make NewStimulus id = "<ID>" response = "" myTime = <T>;

:------------------------------------------------------
:Block 2 - associate new stimulus with wired-in response
: if appropriate

:rule r3
rule block 2 (goal Associate new stimulus with wired-in
response if appropriate)
IF (in NewStimulus id = <ID> )

(in Wired-in id = <ID> AND response = <R> )
THEN

in 1 response = "<R>";

:------------------------------------------------------
:Block 3 - reports response, forgets old data,
: holds generated stimulus-response rules

:rule r4
:rule block 3 (goal Report response to unconditioned

stimulus)
IF (in NewStimulus id = <ID> AND response = <R> AND
response <> "" )
THEN

message ‘<ID> - <R>! \n’;

:rule r5
rule block 3 ( goal Forget old stimuli )
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IF (in Time forget = <TF> )
(in Stimulus myTime < <TF> )

THEN
delete 2;

:rule r6
rule block 3 (goal Forget old stimulus pairs)
IF (in Time forget = <TF> )

(in Pair T2 < <TF> )
THEN
delete 2;

:rule r7
rule block 3 ( goal Forget how many pairs we had )
IF (in Time forget = <TF> )

(in Count myTime < <TF> )
THEN
delete 2;

:------------------------------------------------------
:Block 4 - stimulus with known response paired with
: previous neutral stimulus, moves NewStimulus into
: short-term memory

:rule r8
rule block 4 ( goal If response known, pair with
previous neutral stimuli )
IF (in Time myTime = <T> AND pairTime = <TP> )
(in NewStimulus id = <ID1> AND response = <R> AND
response <> "" AND myTime = <T1> )

(in Stimulus id = <ID2> AND response = "" AND
myTime = <T2> AND myTime >= <TP> )

THEN
reset,
make Pair id1 = "<ID1>" id2 = "<ID2>" T1 = <T1> T2 = <T2>,
make Count id1 = "<ID1>" id2 = "<ID2>" N 0 myTime = <T>;

:rule r9
:rule block 4 (goal Moves NewStimulus into short-term

memory)
:IF (in NewStimulus id = <ID> AND response = <R> AND

myTime = <T> )
THEN
make Stimulus id = "<ID>" response = "<R>" myTime = <T>,
delete 1;
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:------------------------------------------------------
:Block 5 - if latest stimulus paired with more than one
: neutral stimulus, select latest one

:rule r10
rule block 5 (goal Picks latest neutral stimulus paired
with current one)
IF (in Time myTime = <T> )

(in Pair T1 = <T> AND T2 = <T2> )
(in Pair T1 = <T> AND T2 < <T2> )

THEN
delete 3;

:rule r11
rule block 5 (goal picks latest instance of count)
IF (in Count tt = <TT>)

(in Count tt < <TT> )
THEN

delete 2;

:------------------------------------------------------
:Block 6 - counts recent stimulus pairs

:rule r12
rule block 6 ( goal count number of recent stimulus
pairs )
IF (in Count id1 = <ID1> AND id2 = <ID2> AND N = <N1> )

(in Pair id1 = <ID1> AND id2 = <ID2> )
THEN

in 1 N ( $<N1> + 1 );

:------------------------------------------------------
:Block 7 - stops making new data if one already exists

:rule r13
rule block 7 ( goal Stops making new rule if one already

made )
IF (in Rulemade id1 = <ID1> AND id2 = <ID2> )

(in Count id1 = <ID1> AND id2 = <ID2> )
THEN

delete 2;

:------------------------------------------------------
:Block 8 - generates new rule if ready
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:rule r14
rule block 8 (goal Generates rule for response to
conditioned stimuli)

IF(in Count id1 = <ID1> AND id2 = <ID2> AND N > 2 )
(in Wired-in id = <ID1> AND response = <R> )

THEN
reset,
delete 1,
message ‘New rule\: conditioning <ID1> to <ID2>
response <R>\n’,

delete 1,
make Rulemade id1 = "<ID1>" id2 = "<ID2>",
rule block 2 (goal Conditioned response <R> to
stimulus <ID2>)

IF (in NewStimulus id = "<ID2>" )
Then
message 12 ‘<ID2> - LOOK OUT - <ID1> coming\,
<R>!\n’;

:rule r15
rule block 8 (goal delete instance of count - no longer
needed)

IF ( Count )
THEN
delete 1;

:------------------------------------------------------
:Block 10 - sequences rule blocks
:rule r16
rule block 10 (goal Sequences rule blocks for firing)
IF (in Fire block = <B> AND block < 8 )
THEN
in 1 block = (<B> + 1),
fire block <B> off,
fire block (<B> + 1) on;

:rule r17
rule block 10 (goal Restarts rule firing sequence after
stimulus processed)
IF (in Fire block = 8 )
THEN
in 1 block = 0,
fire block 8 off,
fire block 0 on;
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:rule r18
rule block 10 (goal Fires once to report stimuli with
wired-in responses)
IF (in Wired-in id = <ID> and response = <R> )
THEN

string + "Stimulus <ID> response <R>\n";

:++++++++++++++++++++++++++++++++++++++++++++++++++++++

:MAKES

:library of wired-in stimulus-response responses

make Wired-in id = "burn" response = "RUN";
make Wired-in id = "food" response = "WHEE";
make Wired-in id = "girls" response = "WHEE";
make Time myTime = 0;

string = "Simulation of pavlovian conditioning.\n\n";
string + "A stimulus, with no response associated,
coming just ";

string + "before a second stimulus with known response,
tends ";

string + "to associate the known response to the first
stimulus. \n";

:write out stimulus library to screen
message "<string>";
fire all off;
fire block 10 on;

:write out stimuli with given response
string = "Known stimuli with wired-in responses -\n\n";
run;

message "<string>";

string = "There are two basically different approaches
to this ";

string + "problem. One way is to generate a new rule if
a new ";

string + "stimulus becomes associated with a previous
stimulus ";
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string + "with known response: that is what this program
does. \n";

string + "We could instead modify the data base on which
the ";

string + "rules operate. \nTry seeing if the the burnt child
dreads the fire. ";

string + "For example, enter fire followed by burn three
or ";

string + "four times in a row, and see what happens. ";
string + "You can of course enter stimuli not in the
library. \n";

message "<string>";

make Input;
make Fire block = 0;
make Forget delPT = 2 delFT = 12;

fire block 0 on;
message "PAVLOV2.PAR Ready to run\n";
:run;
:******************************************************

:******************************************************
:program RULEGEN.FPS - demonstrates generation of a rule
:by another rule
:******************************************************

message "compiling program rulgen.fps..." ;

declare Proto
element str
attr str
type str ;

:rule r0
rule (goal Enter data for new data element)
IF ( in Proto element.cf 0 )
THEN
input "Enter data element name - " 1 element,
input "Enter attribute name - " 1 attr,
input "Enter attribute type: str\, int or flt -" 1

type lcase str int flt ;

:rule r1
rule (goal Rule-generating rule)
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IF ( in Proto element <EL> attr <AT> type <TY> )
THEN

reset ,
message "rulgen firing" ,
declare <EL> <AT> <TY> ,
rule (goal Inputs data for new attribute\, generates
second new rule)

IF ( in <EL> <AT>.cf 0 )
THEN
message "New rule firing" ,
input "Enter value of attribute <AT> type <TY>" 1 <AT>,
rule (goal Prints rules and data)
IF ( in <EL> <AT> <X> )
THEN

message "New rule\’s new rule firing\n",
message "with antecedent (<EL> <AT> = \<X\>)\n" ,
: Note: in printing antecedent, \"s must be
inserted before <

: and after >, causing <X> to print. If this is
not done,

: the current value of <X>, i.e. the value of
attribute <AT>

: in data element <EL>, will be printed.
message "Rules now are\:\n" ,
prule ,
message "Data now are\:\n" ,
prdata ;

:rule r2
rule rconf 999 (goal Makes instance of new data element)
IF ( in Proto element = <EL> )
THEN

message "\nmaking instance of <EL> -\n" ,
make <EL> ;

make Proto ;

string = "This short program is for the stronghearted.\n" ;
string + "rulgen will first create a new memory

descriptor to your specs\n" ;
string + "and a new rule to enter a value for the new

attribute.\n" ;
string + "The new rule will make still another rule to

print rules and data.\n";
message "<string>";
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message "Initial rules:";
prule;
string = "To create a new data element,\n" ,
string + "enter name of data element, attribute and data

type.\n",
string + "Data type should be one of str, int or flt." ;
message "<string>";
run;
message "RULEGEN finished.\n" ;
exit;
:******************************************************

:******************************************************
: program SCHIZO.PAR - psychiatric diagnosis
: Jeff Jones, University of Texas at Arlington
:******************************************************

thresh 1 ;

write ’compiling program schizo.par....\n’ ;

declare Fact
fact str ;

declare Symptoms
symptom fzset
(
has_depressive_symptoms
has_manic_symptoms
has_schizophrenic_symptoms
) ;

declare Diagnosis
dx fzset
(
major_depression
manic_depressive_psychosis
schizophrenia
schizophrenia_disorganized_type
schizophrenia_catatonic_type
schizophrenia_paranoid_type
paranoid_disorder
) ;

declare enable
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block int ;

:------------------------------------------------------
:block 0 - gets patient information

:rule r0
rule

(goal Gets confidence levels in facts)
IF (in Fact fact <FA> )
THEN

input "<FA> (0 - 1000) ?\n" 1 fact.cf ;

:------------------------------------------------------
:block 1 - gets rid of unverified facts for housekeeping

:rule r1
rule block 1 (goal Gets rid of fact if fact.cf 0)
IF (in Fact fact.cf 0 )
THEN

delete 1 ;

:------------------------------------------------------
:block 2 - gets symptoms

:rule r2
rule rconf 400 block 2

(goal Finds symptom is has_depressive_symptoms)
IF (in Fact fact "has sad face" )

(in Fact fact "has depressed mood" )
( Symptoms )

THEN
write ’has depressive symptoms ’, pconf ,
in 3 symptom is has_depressive_symptoms ;

:rule r3
rule rconf 500 block 2

(goal Finds symptom is has_depressive_symptoms)
IF (in Fact fact "loses interest in usual activities" )

( Symptoms )
THEN

write ’has depressive symptoms ’, pconf ,
in 2 symptom is has_depressive_symptoms ;

:rule r4
rule rconf 900 block 2
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(goal Finds symptom is has_depressive_symptoms)
IF (in Fact fact "has self deprecatory ideas" )
(in Fact fact "has thoughts of death or suicide" )
( Symptoms )

THEN
write ’has depressive symptoms ’, pconf ,
in 3 symptom is has_depressive_symptoms ;

:rule r5
rule rconf 600 block 2
(goal Finds symptom is has_depressive_symptoms)

IF (in Fact fact "has insomnia" )
(in Fact fact "is restless" )
( Symptoms )

THEN
write ’has depressive symptoms ’, pconf ,
in 3 symptom is has_depressive_symptoms ;

:rule r6
rule rconf 500 block 2
(goal Finds symptom is has_depressive_symptoms)

IF (in Fact fact "loses weight" )
(in Fact fact "has low energy" )
( Symptoms )

THEN
write ’has depressive symptoms ’, pconf ,
in 3 symptom is has_depressive_symptoms ;

:rule r7
rule rconf 600 block 2
(goal Finds symptom is has_manic_symptoms)

IF (in Fact fact "is restless" )
(in Fact fact "has euphoria" )
(in Fact fact "is overactive" )
( Symptoms )

THEN
write ’has manic symptoms ’, pconf ,
in 4 symptom is has_manic_symptoms ;

:rule r8
rule rconf 700 block 2
(goal Finds symptom is has_manic_symptoms)

IF (in Fact fact "has animated appearance" )
(in Fact fact "has flight of ideas" )
(in Fact fact "has push of speech" )
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(in Fact fact "is distractable" )
( Symptoms )

THEN
write ’has manic symptoms ’, pconf ,
in 5 symptom is has_manic_symptoms ;

:rule r9
rule rconf 800 block 2

(goal Finds symptom is has_manic_symptoms)
IF (in Fact fact "has excess energy" )

(in Fact fact "has many big plans" )
(in Fact fact "has hallucinations" )
( Symptoms )

THEN
write ’has manic symptoms ’, pconf ,
in 4 symptom is has_manic_symptoms ;

:rule r10
rule rconf 600 block 2

(goal Finds symptom is has_schizophrenic_symptoms)
IF (in Fact fact "has persecutory or jealous delusions" )

(in Fact fact "has hallucinations" )
( Symptoms )

THEN
write ’has schizophrenic symptoms ’, pconf ,
in 3 symptom is has_schizophrenic_symptoms ;

:rule r11
rule rconf 600 block 2

(goal Finds symptom is has_schizophrenic_symptoms)
IF (in Fact fact "has somatic or religious delusions" )

( Symptoms )
THEN

write ’has schizophrenic symptoms ’, pconf ,
in 2 symptom is has_schizophrenic_symptoms ;

:rule r12
rule rconf 700 block 2

(goal Finds symptom is has_schizophrenic_symptoms)
IF (in Fact fact "has incoherent thought and speech" )

(in Fact fact "has markedly illogical thoughts" )
(in Fact fact "has bizzare delusions" )
( Symptoms )

THEN
write ’has schizophrenic symptoms ’, pconf ,
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in 4 symptom is has_schizophrenic_symptoms ;

:rule r13
rule rconf 800 block 2
(goal Finds symptom is has_schizophrenic_symptoms)

IF (in Fact fact "has abnormal motor movement or posture" )
(in Fact fact "has inappropriate affect" )
( Symptoms )

THEN
write ’has schizophrenic symptoms ’, pconf ,
in 3 symptom is has_schizophrenic_symptoms ;

:------------------------------------------------------
:block 3 - gets diagnosis from symptoms and facts

:rule r14
rule rconf 800 block 3
(goal Finds dignosis is major_depression)

IF (in Symptoms symptom is has_depressive_symptoms)
(in Fact fact "symptoms have lasted for at least one

month" )
( Diagnosis )

THEN
write ’diagnosis major depression ’, pconf ,
in 3 dx is major_depression ;

:rule r15
rule rconf 900 block 3
(goal Finds diagnosis is manic_depressive_psychosis)

IF (in Symptoms symptom is has_manic_symptoms )
(in Symptoms symptom is has_depressive_symptoms )
( Diagnosis )

THEN
write ’diagnosis manic depressive psychosis ’, pconf ,
in 3 dx is manic_depressive_psychosis ;

:rule r16
rule block 3
(goal Finds diagnosis is major_depression)

IF (in Symptoms symptom is has_depressive_symptoms )
(in Fact fact "has persecutory or jealous delusions" )
(in Fact fact "has hallucinations" )
( Diagnosis )

THEN
write ’diagnosis major depression ’, pconf ,
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in 4 dx is major_depression ;

:rule r17
rule block 3

(goal Finds diagnosis is schizophrenia)
IF (in Symptoms symptom is has_schizophrenic_symptoms )

(in Fact fact "symptoms have been continuous for more
than 6 months" )
(in Fact fact "the onset of illness is before age 45" )
( Diagnosis )

THEN
write ’diagnosis schizophrenia ’, pconf ,
in 4 dx is schizophrenia ;

:rule r18
rule rconf 800 block 3

(goal Finds diagnosis is paranoid_disorder)
IF (in Fact fact "has persecutory or jealous delusions" )
(in Fact fact "has intact thinking and adaptive functioning" )
( Diagnosis )

THEN
write ’diagnosis paranoid disorder ’, pconf ,
in 3 dx is paranoid_disorder ;

:rule r19
rule block 3

(goal Finds diagnosis is manic_depressive_psychosis)
IF (in Symptoms symptom is has_manic_symptoms )

(in Symptoms symptom is has_depressive_symptoms )
(in Fact fact "has persecutory or jealous delusions" )
(in Fact fact "has hallucinations" )
( Diagnosis )

THEN
write ’diagnosis manic depressive psychosis ’, pconf ,
in 5 dx is manic_depressive_psychosis ;

:rule r20
rule block 3

(goal Finds diagnosis is paranoid_disorder)
IF (in Symptoms symptom is has_schizophrenic_symptoms )
(in Fact fact "has persecutory or jealous delusions" )
(in Fact fact "has intact thinking and adaptive functioning" )
( Diagnosis )

THEN
write ’diagnosis paranoid disorder ’, pconf ,
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in 4 dx is paranoid_disorder ;

:------------------------------------------------------
:block 4 - updated diagnoses

:rule r21
rule rconf 800 block 4
(goal Updates diagnosis to schizophrenia_disorganized_

type)
IF (in Diagnosis dx is schizophrenia )
(in Fact fact "has incoherent thought and speech" )
(in Fact fact "has markedly illogical thoughts" )
(in Fact fact "has inappropriate affect" )

THEN
write ’diagnosis disorganized schizophrenia ’, pconf ,
in 1 dx is schizophrenia_disorganized_type ;

:rule r22
rule rconf 800 block 4
(goal Updates diagnosis to schizophrenia_catatonic_

type)
IF (in Diagnosis dx is schizophrenia )
(in Fact fact "has abnormal motor movement or posture" )
(in Fact fact "has inappropriate affect" )

THEN
write ’diagnosis catatonic schizophrenia ’, pconf ,
in 1 dx is schizophrenia_catatonic_type ;

:rule r23
rule rconf 800 block 4
(goal Updates diagnosis to schizophrenia_paranoid_type)

IF (in Diagnosis dx is schizophrenia )
(in Fact fact "has persecutory or jealous delusions" )
(in Fact fact "has hallucinations" )

THEN
write ’diagnosis paranoid schizophrenia ’, pconf ,
in 1 dx is schizophrenia_paranoid_type ;

:------------------------------------------------------
:block 5 - final diagnosis

:rule r24
rule block 5
(goal Writes fuzzy set of final diagnoses with

confidences)
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IF ( Diagnosis )
THEN

message "final diagnosis -\n" ,
prmem 1 ;

:------------------------------------------------------
:block 6 - enables and disables rule blocks

:rule r25
rule block 6

(goal Controls block firing sequence)
IF (in enable block <N> block < 6 )
THEN

write ’\n’ ,
in 1 block ( <N> + 1 ) ,
fire block <N> del ,
fire block ( <N> + 1 ) on ;

:++++++++++++++++++++++++++++++++++++++++++++++++++++++

write ’reading fact.dat...\n’ ;
transfer Fact from facts.dat;
write ’read fact.dat\n’ ;

make Symptoms ;
make Diagnosis ;

make enable block 0 ;
fire all off ;
fire block 0 on ;
fire block 6 on ;

string = "Program SCHIZO.PAR does a simple psychiatric
evaluation.\n" ;

string + "You will be asked if certain behavioral
manifestations " ;

string + "are present. Enter your confidence, anywhere
from zero ";

string + "to 1000, that they are present.\n" ;
string + "Zero means you are sure that they are not

present,\n" ;
string + "250 means probably not,\n" ;
string + "500 means you are evenly balanced between yes

and no,\n" ;
string + "750 means probably yes,\n" ;
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string + "1000, you are sure that they are present.\n\n" ;
string + "SCHIZO.PAR ready to run\n" ;
message "<string>";
run ;
stop ;

:******************************************************

:******************************************************
: Program SIMPLE.PAR to read SAO2 data for neonatal infants
:******************************************************

write ’Program SIMPLE.PAR to alarm on low SAO2 for
neonatal infants\n’;

declare Data
deltaT flt
T flt
SAO2 flt
status str;

declare File
fileName str
lines int
klines int
status str;

:++++++++++++++++++++++++++++++++++++++++++++++++++++++
: Block 0 - initialization

:rule r0
rule block 0 (goal Read data file name)
IF (in File fileName.cf = 0)
THEN
write ’Enter data file name (try SIMPLE.DAT) ’,
read 1 fileName,
in 1 status = "";

:rule r1
rule block 0 (goal Open data file)
IF (in File fileName = <F> AND status = "")
THEN
acquire disk1 INIT 1 <F>,
in 1 lines = 0 klines = 0;

:rule r2
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rule block 0 (goal Try again to open file if filename fails)
IF (in File status = "NO_FILE")
THEN

in 1 fileName.cf = 0 status = "";

:rule r3
rule block 0 (goal proceed if file opened OK)
IF (in File status = "OK")
THEN

fire block 0 off,
fire block 1 on;

:++++++++++++++++++++++++++++++++++++++++++++++++++++++
: Block 1 - read data

:rule r4
rule block 1 (goal Read a data item)
IF (Data)
(in File lines = <L> AND klines = <KL> AND status = "OK")

THEN
acquire disk1 READ 1 deltaT SAO2 status,
:in 2 klines = (<KL> + int((<L> + 1) / 1000))
:lines = (<L> + 1 - int((<L> + 1)/1000) * 1000),
in 2 lines = (<L> + 1),
fire block 1 off,
fire block 2 on;

:rule r5
rule block 1 (goal Acknowledge closure of data file)
IF ( in File fileName = <F> AND status = "CLOSED")
THEN

write ’Data file <F> closed\n’,
halt;

:++++++++++++++++++++++++++++++++++++++++++++++++++++++
: Block 2 - print (process) data, terminate if enough
lines read

:rule r6
rule block 2 (goal Print data read)
IF (in Data SAO2 = <SAO2> AND T = <T> AND deltaT = <DT>
AND status = "OK")
(in File lines = <L> AND lines < 100 AND klines = <KL>

AND status = "OK")
THEN
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in 1 T = (<T> + <DT>),
write ’SAO2 <SAO2> T <T> lines read <KL>k + <L>\n’,
fire block 2 off,
fire block 3 on;

:rule r7
rule block 2 (goal Close input file if enough lines read)
IF (in File lines = 100 AND status = "OK")
THEN
acquire disk1 END 1 status,
fire all off,
fire block 3 on;

:++++++++++++++++++++++++++++++++++++++++++++++++++++++
:block 3 - clear and reinstate memory, read more data or
terminate

:rule r8
rule block 3 (goal Go back and read more data)
IF (in File status = "OK")
THEN
transfer all to savedata,
clear data,
transfer all from savedata,
fire block 3 off,
fire block 1 on;

:rule r9
rule block 3 (goal End run)
IF ( in File status <> "OK")
THEN
write ’Halting run\n’,
halt;

:++++++++++++++++++++++++++++++++++++++++++++++++++++++
make Data T = 0;
make File;
fire all off;
fire block 0 on;

String Rule

declare True;

rule IF (True)
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THEN
<string>,
make True;

string = "rule IF (True) THEN write ’OK’";
:make r0 fireable
make True;
:create new rule
run 1;
:make new rule fireable
modify 1;
:fire new rule
run 1;

:***************************************************** *
:program SUM.FPS to illustrate recursive arithmetic in
serial FLOPS
:10-15-86 WS
:instances of NUMBER are added in one parallel step to
SUM TOTAL
:******************************************************

string = "Program SUM.FPS computes the sum of s recursively";
string + " in several sequential steps, one for each

number to be added.\n";
string + "Compiling program SUM.FPS";
message "<string>";

declare Number
num flt;

declare Sum
total flt;

:------------------------------------------------------
:block 0 - accumulates sum recursively in many sequential
steps

:rule r0
rule (goal Accumulates sum recursively in many
sequential steps)
IF (in Number num <N>)

(in Sum total <T>)
THEN

delete 1,
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write "adding <N> to <T> getting \(<N> + <T>\)\n",
in 2 total (<T> + <N>);

:rule r1
rule rconf 0 (goal Prints out total when no more
instances of r0 are fireable)
IF (in Sum total <T>)
THEN
message "total of all is <T>\n",
halt;

make Number num 12.34;
make Number num 23.45;
make Number num 34.56;
make Number num 45.67;
make Number num 56.78;
make Number num 67.89;
make Number num 78.90;
make Number num 89.01;
make Number num 90.12;
make Number num 01.23;
make Number num 32.10;
make Number num 21.09;
make Number num 32.10;
make Number num 43.21;
make Number num 54.32;
make Number num 65.43;
make Sum total 0;
fire block 1 off;
string = "Like SUM.PAR, these FLOPS commands will be

issued in sequence\:\n";
string + "\’prstack\’ will print the list of fireable

rules.\n";
string + "Next\, \’run 1\’ will execute one rule firing

step.\n";
string + "The \’prstack\’ and \’run 1\’ sequence will be

repeated until finished.\n";
string + "Patience is required in running this

program:";
string + "Please keep pressing keys until it is finished,";
string + "then run SUM.PAR for a startling comparison.\n";
string + "Ready to run SUM.FPS\n";
message "<string>";
run;
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:******************************************************
:program SUM.PAR to illustrate recursive arithmetic in
parallel FLOPS
:instances of are added in one parallel step to SUM TOTAL
:******************************************************

string = "Program SUM.PAR computes the sum of s recursively";
string + " in one parallel step.\n";
string + "Compiling program SUM.PAR";
message "<string>";

declare Number
num flt;

declare Sum
total flt;

:------------------------------------------------------
:block 0 - accumulates sum recursively in one parallel step

:rule r0
rule (goal Adds num to sum recursively)
IF (in Number num = <N> )

(in Sum total = <T> )
THEN

message "adding <N> to $<T> getting \(<N>+$<T>\)\n",
modify 2 total = ( $<T> + <N> ),
fire block 0 off,
fire block 1 on;

:------------------------------------------------------
:block 1 - final answer

:rule r1
rule block 1 (goal Prints final sum)
IF (in Sum total = <T> )
THEN

message "total of all is <T>\n";

make Number num 12.34;
make Number num 23.45;
make Number num 34.56;
make Number num 45.67;
make Number num 56.78;
make Number num 67.89;
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make Number num 78.90;
make Number num 89.01;
make Number num 90.12;
make Number num 01.23;
make Number num 32.10;
make Number num 21.09;
make Number num 32.10;
make Number num 43.21;
make Number num 54.32;
make Number num 65.43;
make Sum total 0;
fire block 1 off;
message "ready to run SUM.PAR\n";
message "fireable rule stack\:\n";
prstack;
message "Ready to execute \’run 1\’\n";
run 1;
write "fireable rule stack\:\n";
prstack;
write "Ready to execute \’run 1\’\n";
run 1;
string = "SUM.PAR finished.\n";
string + "Compare to program SUM.FPS!\n";
message "<string>";
exit;
:***************************************************** *
call urc.exe;
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ANSWERS

1.1 Unlike most languages, FLOPS is non-procedural (data-driven); has fuzzy

mathematics thoroughly integrated; and can be run as either a sequential

or a parallel language, emulating a parallel computer.

1.2 Procedural languages execute instructions in the order in which they appear

in the program, with specific control transfer instructions permitted. A data-

driven language determine that instructions are made executable by the data,

and executes these if they are enabled. If FLOPS is in command mode, it is

procedural; in run mode, when rules are being fired, FLOPS is data-driven

and non-procedural.

1.3 Most importantly, FLOPS can handle both ambiguities and contradictions

through the use of fuzzy sets. FLOPS also assumes that all data are uncertain

but establishing truth values to all data; crisp (certain) data are a special case

of uncertain data, with truth value 1. Data whose value is false or unknown

have truth value zero.

1.4 When firing rules, a parallel program executes all fireable rules effectively

simultaneously. A sequential program selects one fireable rule for firing

but some reasonable criterion, puts the rest of the fireable rules on a stack

for firing if no rules are newly fireable (backtracking).

1.5 FLOPS programs have the ability to learn from experience in two ways: they

can construct new rules from data, and can add to a data base of expert

knowledge, both as a result of experience.

1.6 Rule-based expert systems rely considerably on incorporating the skills of

an expert in the problem domain, but relatively little on historical data;

neural networks rely heavily on an extensive historical data base, and rela-

tively little on a domain expert.

1.7 Fuzzy control systems deal exclusively with numeric output, and employ a

special rule format that is quite inflexible but very efficient for its purpose.

General-purpose fuzzy reasoning systems require a rule syntax that is much

more flexible and more complex than syntax for fuzzy control rules.
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1.8 A domain expert, who is thoroughly familiar with the field of application;

and a knowledge engineer, who is thoroughly familiar with the expert

system language and techniques of knowledge acquisition techniques.

1.9 Fuzzy expert systems should be able to handle both ambiguities and contra-

dictions, to learn from experience by adding new rules or to a database of

expert knowledge, and to fire rules either sequentially or in parallel.

1.10 The first problem for the knowledge engineer is to become adept at a differ-

ent kind of computer language. Next is the problem of acquiring relevant

knowledge from the domain expert. Finally, there are the problems of

writing, debugging, calibrating, and validating the expert system itself.

1.11 Like other computer languages, the most important tool is the IDE, in which pro-

grams can be written, edited and debugged, and that provides extensive help files.

2.1 No. For example, the store of visual images we have accumulated and the

ability to extract relevant features from these and relate them to each

other and to nonvisual knowledge is of great importance to us, but exceed-

ingly difficult to reduce to computer processing.

2.2 Such problems are more efficiently handled by procedural language pro-

grams, using the “call” command and communicating via the blackboard.

2.3 The rule antecedent is a fuzzy logical proposition, that determines whether

the rule is fireable. The consequent is a set of FLOPS instructions to be

executed when the rule is fired.

2.4 At a minimum, data types should include integers, floats, strings, discrete

fuzzy sets, and fuzzy numbers. Integers, floats, and strings should be

coupled with truth values; the truth values should be accessible as data.

Membership functions coupled to discrete fuzzy set members should be

optionally furnished.

2.5 Yes. Having a rule that creates new rules is one way in which a program can

learn from experience.

2.6 No. A rule consequent can include any legal FLOPS instruction.

2.7 A metarule is a rule that controls the rule-firing process, and specifies which

rules and blocks of rules are enabled or disabled for firing.

2.8 Procedural programs execute instructions in the order in which they appear

in the program; data-driven programs execute a rule if the data make it

fireable, regardless of its position in the program.

2.9 In “command” method, FLOPS reads commands from a disk file or key-

board, and executes these commands procedurally in the order in which

they appear. In “run” mode, FLOPS fires rules in data-driven non-procedural

fashion.
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2.10 Serial rule-firing is indicated if information must be elicited from a user in

context-dependent fashion, so that the next question to be asked depends on

the answer to the previous question.

2.11 In forward chaining, we reason from data to goals; in backward chaining, we try

to establishwhat data are needed to reach a goal, and then try to obtain those data.

2.12 A blackboard system integrates several programs and data by providing a

structured way for programs to call each other and communicate data

among themselves to solve complex problems.

2.13 FLOPS represents uncertainties as truth values between 0 and 1000, corre-

sponding to the usual representation as between 0 and 1.

3.1 a. Table Answers 3.7-1a

A B P ¼ A AND B Q ¼ A OR B P AND Q P OR Q

0 0 0 0 0 0

0 1 0 1 0 1

1 0 0 1 0 1

1 1 1 1 1 1

b. Table Answer 3.7-1b

A B R ¼ A IMPLIES B S ¼ AOR B R AND S R OR S

0 0 1 0 0 1

0 1 1 1 1 1

1 0 0 1 0 1

1 1 1 1 1 1

3.2 a. Neither.

Table Answer 3.7-2a

p q NOT q p AND NOT q

0 0 1 0

0 1 0 0

1 0 1 1

1 1 0 0

b. Neither. ((not P) or Q)

Table Answer 3.7-2b

p q NOT p NOT p OR q

0 0 1 1

0 1 1 1

1 0 0 0

1 1 0 1
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c. Tautology. (P and (P implies Q)) ! Q

Table Answer 3.7-2c

p q p ! q p AND (p ! q) (p AND (p ! q)) ! q

0 0 1 0 1

0 1 1 0 1

1 0 0 0 1

1 1 1 1 1

d. Neither. ((P ! Q) and (Q ! R)) ! (P ! R)

Table Answer 3.7-2d

p q r p ! q p ! r q ! r

(p ! q)

> (q ! r)

((p ! q) > (q ! r))

! (p ! r)

0 0 0 1 1 1 1 1

0 0 1 1 1 1 1 1

0 1 0 1 1 0 0 1

0 1 1 1 1 1 1 1

1 0 0 0 0 1 1 0

1 0 1 0 1 1 1 1

1 1 0 1 0 0 0 1

1 1 1 1 1 1 1 1

3.3 a. P AND B ¼ min( p, q) (3:1)

P OR B ¼ not(min(1� p, 1� q)

¼ not(1�max( p, q)

¼ max( p, q) (3:4)

b. P AND B ¼ p � q (3:2)

P OR B ¼ not((not p) � (not q))

¼ 1� (1� p) � (1� q)

¼ 1� ( pq� p� qþ 1)

¼ pþ q� pq (3:5)

c. P AND B ¼ max(0, pþ q� 1) (3:2)

P OR B ¼ 1�max(0, 1� pþ 1� qþ 1)

¼ 1�max(0, 1� ( pþ q))

¼ min(1, pþ q) (3:6)
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3.4 For a ,¼ x ,¼ (aþ b)=2:

m(x) ¼ k1 þ k2(x� a)2

k1 ¼ 0

if x ¼ (aþ b)=2, m(x) ¼ 0:5

k2((aþ b)=2� a)2 ¼ k2((b� a)=2)2 ¼ 0:5

k2 ¼ 2=(b� a)2

For (aþ b)=2 ,¼ x ,¼ b:

m(x) ¼ k1 þ k2(b� x)2

if x ¼ b, m(x) ¼ 1,

k1 ¼ 1

if x ¼ b� (aþ b)=2, m(x) ¼ 0:5

1þ k2(b� (aþ b)=2� a)2 ¼ 1þ k2((b� a)=2)2 ¼ 0:5

k2 ¼ �2=(b� a)2

Similarly for b ,¼ x ,¼ c=

3.5 Table Answers 3.7-5a-5b

A B A and B (3.1) and (3.3) not (A and B)

0 0 0 1

0 1 0 1

1 0 0 1

1 1 1 0

3.6 a. Table Answer 3.5-6a

A B A and B (3.1) A and B (3.2)

0 0 0 0

0.5 0.5 0.5 0.25

1 1 1 1

b. Table Answer 3.5-6b

A B A or B (3.4) A or B (3.5)

0 0 0 0

0.5 0.5 0.5 0.75

1 1 1 1
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3.7 Table Answer 3.5-7

P Q

not

P P2.Q

P and not

P2.Q

not P and

P2.Q

if P AND P2.Q

then Q ¼ not(not P

and P2,Q) or Q

0 0 1 1 0 1 1

0 0.5 1 1 0 1 1

0 1 1 1 0 1 1

0.5 0 0.5 0.5 0 1 1

0.5 0.5 0.5 1 0.5 0.5 1

0.5 1 0.5 1 0.5 0.5 1

1 0 0 0 0 1 1

1 0.5 0 0.5 0.5 0.5 1

1 1 0 1 1 0 1

3.8 a.

A2 ¼

0:2 1:0 0:3

0 1:0 0:4

0:4 0:3 1:0

0
B@

1
CAA3 ¼

0:4 0:3 1:0

0:4 0:4 1:0

0:3 1:0 0:4

0
B@

1
CAA4 ¼

0:3 1:0 0:4

0:4 1:0 0:4

0:4 0:4 1:0

0
B@

1
CA

A5 ¼

0:4 0:4 1:0

0:4 0:4 1:0

0:4 1:0 0:4

0
B@

1
CAA6 ¼

0:4 1:0 0:4

0:4 1:0 0:4

0:4 0:4 1:0

0
B@

1
CAA7 ¼

0:4 0:4 1:0

0:4 0:4 1:0

0:4 1:0 0:4

0
B@

1
CA

b.

A2 ¼

1:0 0:2 0:2

0:4 1:0 0:2

0:3 0:3 1:0

0
B@

1
CAA3 ¼

1:0 0:2 0:2

0:4 1:0 0:2

0:3 0:3 1:0

0
B@

1
CA

A4 ¼

1:0 0:2 0:2

0:4 1:0 0:2

0:3 0:3 1:0

0
B@

1
CA

c. The composed matrix will oscillate or stabilize.

3.9 a: T ¼ 25, Temperature ¼
low

0:5
,
medium

0:5
,
high

0

� �

b: T ¼ 75, Temperature ¼
low

0
,
medium

0:5
,
high

0:5

� �

c: T ¼ 50, Temperature ¼
low

0
,
medium

1
,
high

0

� �
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3.10
T ¼

0 � 0:42þ 50 � 0:88þ 100 � 0:14

0:42þ 0:88þ 0:14
¼ 40:28

4.1 Tm(x1, . . . , xn) ¼ min(x1, . . . , xn)

Tm(x1, x2, x3) ¼ Tm(Tm(x1, x2), x3)

¼ Tm(min(x1, x2), x3)

¼ min(min(x1, x2), x3)

¼ min(x1, x2, x3)

Cm(x1, . . . , xn) ¼ max(x1, . . . , xn)

Cm(x1, x2, x3) ¼ Cm(Cm(x1, x2), x3)

¼ Cm(max(x1, x2), x3)

¼ max(max(x1, x2), x3)

¼ max(x1, x2, x3)

TL(x1, . . . , xn) ¼ max 0,
Xn
i¼1

xi � nþ 1

 !

TL(x1, x2, x3) ¼ TL(TL(x1, x2), x3)

¼ TL(max(0, x1 þ x2 � 2þ 1), x3)

¼ TL(max(0, x1 þ x2 � 1), x3)

¼ max(0, x1 þ x2 þ x3 � 1� 2þ 1)

¼ max(0, x1 þ x2 þ x3 � 3þ 1)

CL(x1, . . . , xn) ¼ min 1,
Xn
i¼1

xi

 !

CL(x1, x2, x3) ¼ CL(CL(x1, x2), x3)

¼ CL(min(1, x1 þ x2), x3)

¼ min(1, x1 þ x2, x3)

Tp(x1, . . . , xn) ¼ x1 � � � xn

TP(x1, x2, x3) ¼ TP(TP(x1, x2), x3)

¼ TP(x1, x2), x3)

¼ x1x2x3

4.2 Since all t-norms are required to reduce to the classical for crisp values f0, 1g,

we must get Table 3.1, defined for classical two-valued logic.

4.3 Since all t-norms are required to reduce to the classical for crisp values f0, 1g,

we must get Table 3.1, defined for classical two-valued logic.

4.4 Non-contradiction: A> Ac ¼ 1.

TL(x, y)¼max(0, xþy�1)¼max(0, xþ (1�x)�1)¼max(0, 0)¼ 0=
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Excluded middle: A>Ac ¼ 1

TC(x, 1� x)¼min(1, xþ1� x)¼min(1, 1)¼ 1

4.5 Reformulating Q to isolate combining B and NOT B:

Q ¼ B OR (NOT A AND NOT B) ¼ (B OR NOT A) AND (B OR NOT B)

Analytic solution:

P ¼ NOT(A AND NOT B) ¼ NOT A AND B

Q ¼ B OR (NOT A AND NOT B) ¼ (B OR NOT A) AND (B OR NOT B)

¼ B OR NOT A

By De Morgan’s theorem,

B OR NOT A ¼ NOT(NOT B AND NOT(NOT A))

¼ B AND NOT A

Numeric solution:

Table Answer 4.5

Logic A :A B :B A> :B

P ¼

:(A > :B) B< :A B< :B

Q ¼ B < (:A > :B)

¼ (B < :A) > (B < :B)

min–max 0.25 0.75 0.5 0.5 0.25 0.75 0.75 0.5 0.5 (Not equal P)

Bounded 0.25 0.75 0.5 0.5 0.25 0.75 0.75 1 0.75 (Equals P)

4.6 The computer program APROXIM.BAS is given in the Appendix. The

results are

Figure Answer 4:4a Fuzzy numbers A, A0, B and B0:
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4.7 Method a gives good flexibility, and is capable of handling central values at

or near zero and cases where the range of the fuzzy number includes both

positive and negative numbers. It does, however, result in a less transparent

code; it is not immediately obvious what the meaning is of say (20, 2, 0.3).

Method b is less flexible, and assumes that the lower limit is non-zero and of

the same sign as the central value; it cannot handle other cases. It is,

however, very transparent; it is immediately clear what “roughly x” means.

4.8 a. The extension principle.

A is a triangular fuzzy number with lower limit 6, central value 8, and

upper limit 12; B is also triangular, with lower limit 7, central value 9,

and upper limit 13. a. The extension principle, for addition, is C(x) ¼

supx,y(min(A(x), B(y))) j xþ y ¼ z). If the sum is to be zero for a particu-

lar value of z, then A(x) and B(y ¼ z2 x) must both be everywhere zero

for that value of z. A(x) is zero from�1 , x � 6, and from 12 � x , 1;

B(y) is zero from�1 , y � 7, and from 12 � y , 1. Accordingly, C(z)

will have zero membership from �1 , z � (6þ 7 ¼ 13), and from \rm

(12þ 13 ¼ 25),¼ z , 1. P(z) will have its maximum value of the sum

of the central values at only one point, z ¼ xþ y ¼ 8þ 9 ¼ 17. Our mem-

bership function for Aþ B is then a triangular number rising from 0 at 14

to 1 at 17, declining from there to 0 at 26, and 0 thereafter.

b. Alpha-cuts.

As the alpha-cut level approaches 0, the left-hand termination points for

A and B approach x ¼ 6 and x ¼ 7, respectively; the right-hand termin-

ation points are 12 and 13, respectively. Adding these termination values,

the xþ y values at zero membership range from �1 to 6þ 7 ¼ 13, and

from 12þ 13 ¼ 25 to1. For the sum to have membership one, both A(x)

and B(y) must have membership one. This occurs only at x ¼ 8 and

y ¼ 9; then C(x) has membership one at 8þ 9 ¼ 17.

Since the relationships are all linear, the membership for the sum C(z) is

0 from �1 to 13; from 0 at 13 to 1 at 17; from 1 at 17 to 0 at 25; and 0

thereafter.

c. Interval arithmetic

In interval arithmetic, the membership functions are rectangular, the

memberships taking on values of either 0 or 1. The interval of x for

which A(x) is non-zero is simply x ¼ [6, 12], and for B(y) [7, 13]. By

(4.42), the interval for C(z) has lower limit 6þ 7 ¼ 13, and upper limit

12þ 13 ¼ 25. C(x) is then defined by the interval [13, 25].

5.1 Classical logic operators obey the laws of Excluded Middle and Non-

Contradiction, However, min–max fuzzy logical operators do not obey

these laws.

5.2 The bounded sum and difference operators should be used when combining

A and NOT A, since they are maximally negatively associated.
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5.3 The min–max operators should be used when combining A and A, since

they are maximally positively associated.

5.4 a. Fuzzy control techniques are used in shaping membership functions, and

are based on many years of experience with current operators; introdu-

cing different operators would invalidate much of current working tech-

niques. Further, the precise way of determining the correlation coefficient

between two membership functions is not yet agreed upon. However, if

the membership functions being combined cross at no greater than 0.5

membership, use of the bounded sum–difference operators produces a

much more intuitive smooth result.

b. Yes. Other operators than the bounded sum–difference produce counter-

intuitive results, and can make programming difficult. This is especially

true when making approximate numerical comparisons such as A less

than OR equal to B.

5.5 a. Zero. This is a Boolean comparison, and the temperature is 78, not 75.

The truth value of Temperature is 0.6; the truth values of the comparison

is zero; and the truth value of the literal 78 is 1. The antecedent truth

value is min(0.6, 0, 1) ¼ 0.6.

b. 0.6. The truth value of Temperature is 0.6; the truth value of the compari-

son is 1; truth value of the literal 78 is 1. Antecedent truth value is

min(0.6, 1, 1) ¼ 0.6.

c. 0.6. Since ,X. is a variable, it is assigned the value and truth value of

Temperature. Again, the truth value of Temperature is 0.6; truth value of

the comparison is 1; the truth value of ,X. is 0.6. Antecedent truth

value is min(0.6, 1, 0.6) ¼ 0.6.

d. 0.356. Truth value of the entire fuzzy set is one by default; truth value of

the comparison is one; truth value of Large is its grade of membership,

0.356. Antecedent truth value is min(1, 1, 0.356) ¼ 0.356.

e. One. Truth value of Temperature.cf is one by default; truth value of the

comparison is 1; and truth value of the literal 0.5 is also 1. Antecedent

truth value is min(1, 1, 1) ¼ 1.0.

5.6 a. From the graph in Figure Question 5.6 it appears that the truth value of

A �¼ B is 0.25.

b. First, we construct the fuzzy number �,B, NOT B OR ,B. This

number is

Figure Answer 5:6b Fuzzy numbers A and �,B:
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Since The highest intersection point of A and �,B is one, the truth

value of the comparison is 1.

c. First we construct the fuzzy number �.¼B, b.B OR B

Figure Answer 5:6c Fuzzy numbers A and �.=B:

From the graph, it appears that the truth value of A �.¼ B is 0.25.

5.7 At first blush, it might seem that A and B are semantically inconsistent, since

they have different names. However, this is not true; A and B have no known

prior relation to each other, and therefore they are not semantically incon-

sistent. Use the default logic.

5.8 UnlikeQuestion 5.7, A andB now have a prior relationship; the both describe the

same entity. In this case, the bounded sum–difference operators are appropriate.

5.9 The problem lies in the requirement of prior knowledge of conditional prob-

abilities. If we have such knowledge, Bayesian methods are rock solid;

otherwise, they are theoretically shaky.

5.10 Theoretical fuzzy logic deals with two measures of uncertainty: possibility

and necessity. Dempster–Shafer methods have two analogous measures:

plausibility and credibility. Possibility and plausibility both measure the

extent to which the data fail to refute an hypothesis; necessity and credibility

both measure the extent to which the data support an hypothesis.

5.11 If we have no knowledge at all, the possibility of a hypothesis is 1, since there

are no data to refute it; its necessity is 0, since there are no data to support it.

6.1 Possibility measures the extent to which the data refute a conclusion;

necessity measures the extent to which the data support a conclusion.

6.2 In the lack of any evidence, Nec(A) ¼ 0, and Pos(A) ¼ 1.

6.3 a. Zero.

b. Initializing grades of membership to 0 permits subsequent rules that tend

to support a particular classification to increase its grade of membership.

If we initialized to 1, we would have to write only rules that refute this

classification with non-monotonic reasoning rather than rules that tend

to establish it, a much less intuitive task.

6.4 Monotonic reasoning permits truth values to increase, but not decrease; non-

monotonic reasoning permits truth values to increase or decrease; and down-

ward monotonic reasoning permits truth values to decrease but not increase.
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6.5 Under monotonic reasoning, that instruction would be rejected; the datum’s

truth value would remain unaltered.

6.6 When we find out that a datum should be wholly or partially invalidated.

6.7 When modifying membership functions prior to defuzzification.

6.8 Monotonic reasoning.

6.9 a. Yes.

b. The TMSoff command permits non-monotonic reasoning to be employed;

the TMSon command restores monotonic reasoning. In defuzzifying,

default inference is downward monotonic.

7.1 a.

A0 ¼
0:25

a1
,
0:75

a2
,
0:75

a3

� �
, ½Ai AND Bj� ¼

0 0 0

0 0:5 0:5

0 0:5 1

2
64

3
75

B0 ¼ A0
W ½Ai > Bj�

¼

max(min(0:25, 0), min(0:75, 0), min(0:75, 0)),

max(min(0:25, 0), min(0:75, 0:5), min(0:75, 0:5)),

max(min(0:25, 0), min(0:75, 0:5), min(0:75, 1))

8><
>:

9>=
>;

¼ {max(0, 0, 0), max(0, 0:5, 0:5), max(0, 0:5, 0:75)}

B0 ¼ {0, 0:5, 0:75}

b.

A ¼
0

a1
,
0:5

a2
,
1

a3

� �
, A0 ¼

0:25

a1
,
0:75

a2
,
0:75

a3

� �
p ¼ max(min(0, 0:25), min(0:5, 0:75), min(1, 0:75))

¼ max(0, 0:5, 0:75) ¼ 0:75

B0 ¼ {min(0:75, B0
j} ¼ {0, 0:5, 0:75}

7.2 The advantages of using separate rules for fuzzification and defuzzification

is that the discrete fuzzy sets are available for use in later reasoning steps, for

output, and for inspection by the programmer during debugging. Most

importantly, the consequent fuzzy set may be non-numeric. The only disad-

vantage is that one or two separate rules are required.

7.3 a. Default inference is monotonic.

b. The truth value of Artifact will be 0.7.

c. We assume that both rules, although different, have equal validity, but

look at somewhat different kinds of artifact. We would select the rule

that best applies to the instance of Region being evaluated.

7.4 Since the consequents of the rules are ORd together, we should set the grade

of membership of “deteriorating” to max(0.1, 0.2, 0.5) or 0.5.
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7.5 a. We will need 45.6 ¼ 6144 rules for the conventional IRC.

b. We will need 4.5.6 ¼ 120 rules for the Combs URC.

8.1 Necessity is the degree to which the evidence supports a datum. If there is no

supporting evidence, then the datum has no support, and its necessity must be

0. If there is no refuting evidence, then there is nothing to refute the datum.

Since possibility is the extent to which the data fail to support a datum, the

evidence fails completely to rfute the datum, and its possibility is 1.

8.2 If we increase Pos(A) to 0.6, leaving Nec(A) unchanged, it will be imposs-

ible to correct an error or resolve a contradiction.

8.3 In a dual-truth-value system, this would not be necessary. But in a necessity-

based system, we have no way to store possibilities from one step to the next.

A calculated Pos(A) and Nec(NOT A) is lost when we go to the next rule-

firing step, and we could end up with inflated necessities in later steps unrest-

ricted by the possibility calculated in an earlier step. This is a disadvantage of

necessity-based systems; fortunately, by reserving consideration of refuting

evidence to the last steps, this disadvantage can be overcome.

8.4 In the simple rule IF A THEN B; A and B are indeed nested since if A is true,

B must also be true and A ) B. However, in more complex rules such as IF

A ANDBAND C THEN NOT D none of the four individual propositions A,

B, C and D need be nested; the complex proposition A AND B AND C is

nested with NOT D, but not with D.

8.5 The failure of max–min logic to obey the laws of excluded middle (and

non-contradiction) means that the use of min–max logic to combine A

and NOT A is invalid, since min–max logic does not obey the law of the

excluded middle (A AND NOT A ¼ 0).

9.1 An IDE permits the programmer to access all necessary functions—text

editor to write the program, language help files, ability to run the program,

and view any resulting error messages—within a single program, the integ-

rated program development environment.

9.2 A text editor for writing the programs, preferably syntax-oriented; help files

covering a broad area, including review of language syntax and explanation

of language keywords; ability to run the program being edited, to set break-

points, to trace program execution; ability to examine data during the

program run; and display of any error messages generated by the program

run while editing the program source code are absolute requirements.

9.3 FLOPS is technologically quite advanced compared to such procedural

languages as FORTRAN or C. FLOPS operates procedurally in command

mode, and non-procedurally in run mode; FLOPS may be run as a parallel

language or as a sequential language, and a single program can use both

modes. For this reason, some features such as program breakpoints and
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data inspection, usually built into the IDE for procedural languages, are built

into the FLOPS run-time module.

9.4 Important debugging aids built into the FLOPS run-time module include

examining data; viewing fireable rule stacks and history of fired rules;

viewing or listing data; rules, and data declarations; ability to exit run

mode temporarily and accept keyboard debugging commands.

9.5 The complexity of the FLOPS language compared to procedural languages

means that it is not feasible to build all debugging aids into the IDE.

9.6 The TFLOPS task bar provides a “check mark” icon that will run a syntax-

checking routine.

9.7 TFLOPS provides an option to set trace levels at no trace, trace rules being

fired, trace FLOPS commands being executed, and trace of data created or

modified during the FLOPS run.

9.8 The FLOPS “Options” menu provides for creating an output file of the

FLOPS run, and displaying this file on return from the run to TFLOPS.

10.1 Data declarations; rules; and data creation.

10.2 First, data declarations; next, rules; next, data creation; finally, the run command.

10.3 Symbols must be defined before they are used in the program; the data

declarations define the symbols we will use later.

10.4 A rule, when first created, has no reference to any data previously created.

Therefore, since FLOPS is data-driven in run mode, a rule when first created

will not be fireable.

10.5 prstack prints the lists of fireable rules prdata prints the data in detail;

and run N runs N firing steps, then returns to command mode.

10.6 a. The LOCAL stack consists of rules found newly fireable since the last

rule-firing step.

b. Rules are listed in order of the pconf values, from highest to lowest.

c. pconf is the value of the combined rule and antecedent confidences,

10.7 The LOCAL stack is a list of rules found fireable after the last rule-firing

step; the PERMANENT stack is a list of rules previously found fireable

but not yet fired.

10.8 On the local stack, they are listed in order of their pconf values. On the

Permanent (backtrack), they are listed in the order in which they were

pushed onto the stack, latest on top.

10.9 The prstack command presents the name of the fireable rule; the identi-

fying time tags of the data that made the rule fireable; and the pconf value

of that rule instance.
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10.10 Serial FLOPS picks one of the newly fireable rules for firing by a rule-

conflict algorithm, and adds any fireable but unfired rules to a backtrack

stack for possible firing if no rules are found newly fireable. Parallel

FLOPS fires all newly fireable rules, and thus cannot add any unfired

rules to the backtrack stack.

10.11 If information must be elicited from a user in a context-dependent fashion,

so that the next question to be asked depends on the answer to the previous

question, serial FLOPS is to be preferred. IF the information is acquired

automatically, or is available at the start of the run, parallel FLOPS is to

be preferred. If either method can be used, its lower systems overhead

makes parallel FLOPS preferable.

11.1 Conventional computer languages operate sequentially, firing one instruc-

tion at a time and taking the next instruction in sequence. FLOPS is a

much more complex language, that can operate in command mode, in

which source language commands are executed sequentially, or in run

mode, in which rules are fired; run mode, in turn, can operate either serially,

in which one rule is fired at a time, or in parallel, in which all fireable rules

are fired concurrently. This flexibility gives FLOPS power, but also makes

both writing and debugging programs more difficult.

11.2 A limited number of debugging features are furnished by TFLOPS. These

include syntax checking of the FLOPS program being edited, specifiying

an output log file that can be returned TFLOPS on completion of the

program run, invoking selectable levels of program trace, display of any

run-time errors on return to TFLOPS. However, most FLOPS debugging

tools are built into FLOPS itself and executed during the program run.

11.3 Debugging a program during a FLOPS run is done by executing a debugging

command, either incorporated in the program itself or, more likely, entered

through the keyboard when the run has been temporarily interrupted, and

FLOPS returned to command mode with keyboard entry of commands.

11.4 There are several ways to interrupt a FLOPS run temporarily for entry of

debug commands.

For simple FLOPS programs with a single run; command at the end of

the program, the run command may be commented out by preceding it with

a colon. After FLOPS reads the program it will then revert to command

mode with keyboard entry, and debug commands (including run N) can
be then entered.

Executing a run N command will cause FLOPS to revert to command

mode after N rule-firing steps have been executed. However, if there are

more commands in the FLOPS program after the run N; is executed,

FLOPSwill take further commands from the program rather than the keyboard.

Execution of a keyboard or halt command will place FLOPS in

command mode with keyboard command entry.
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Setting a breakpoint at a rule by the breakpoint command will interrupt

program execution just before that rule is fired.

During a FLOPS run, clicking the,Cancel. button in a message box will

temporarily revert FLOPS to command mode with keyboard entry.

Debug commands may be placed in the consequent of a rule, to be executed

when that rule is fired.

11.5 A FLOPS program run can be resumed after interruption for keyboard

command entry by executing a resume; command. halt or keyboard
commands must appear last in the consequent clauses.

11.6 The general types of debugging commands are data inspection; rule inspec-

tion; and rule-firing inspection and control; and output logging.

11.7 The absolutely indispensable debugging commands are prdata, which
permits inspection of current data; prstack, which permits listing

newly fireable rules and the backtrack rule stack, with the time tags of the

data that made the rules fireable; and run N, to permit executing a specified

number of rule-firing steps, then reverting to command mode.

11.8 the first step is not to find the offending statement in the program; instead,

the first step is to isolate the defect to a relatively small section of the

program. After the defect has been so isolated, we can proceed to find

what the defect is and fix it.

11.9 The first step is to have a clear understanding of what the overall program or

programs are supposed to do. Obviously, in multiprogram projects the first

step is to determine which program is malfunctioning. Each FLOPS

program consists of modules: data declarations, rules, data created, or exter-

nally input. The rules in turn are modularized into rule blocks, with the

firing sequence usually controlled by metarules. We now try to determine

which module within a program is malfunctioning. Malfunctions can be

caused by several defects, which often manifest themselves by incorrect

rule-firing sequence or incorrect data transformations. The most important

commands are the basic prdata, prstack, run N basic debugging

commands. We must determine that the data are correctly input and modi-

fied (prdata); and whether the rule-firing sequence is correct as each

module is fired (prstack). After we determine which module is malfunc-

tioning, whether in incorrect data transformations or incorrect metarule

functions, we can proceed further to isolate the problem as incorrect input

data, incorrect data declarations, or incorrect rules.

11.10 To detect the actual bug, the basic prdata, prstack, run N basic

debugging commands are likely to be inadequate and must be supplemented

by the other debugging commands in Table 11.1. In addition to the basic

commands, we are likely to need prule to review what a rule actually

is, fire status to determine actual firing status, explain why and

explain why not to determine why rules are or are not fireable;
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explain source <TT> to find out where a data element came from;

prmem <TT> to read the contents of a data element whose identifying time

tag is known; prdes to review a data declaration; outfile <filename>
and close <filename> to open and close a text file to which FLOPS

output will be routed for later review; and any other of the debugging

commands listed in Table 11.1.

12.1 When acquiring data automatically from some process, we do not ordinarily

interrogate the process and ask for some specific data after each datum is

received. Instead, the process transmits preselected data at preselected

intervals automatically. When acquiring data from a human, however, we

will ordinarily ask one question and evaluate the reply. We will then ask

another question; which question we ask next usually depends on the

previous reply.

12.2 The nodes in a decision tree consists of a hypothesis (in a general sense), and

a rule or group of rules to determine the validity of the hypothesis.

12.3 If a hypothesis at a node is accepted, we proceed to the node or nodes just

beneath that node. If there are more than one nodes at the next level, we must

have a scheme for selecting one of them.

12.4 A rule-conflict algorithm is a scheme for deciding which of a number of con-

currently fireable rules will be selected for firing. In a depth-first search of a

tree, a rule-conflict algorithm may be used to select which of a number of

competing nodes will be selected for test.

12.5 Backtracking takes place when a node hypothesis is rejected and when no

rules are newly fireable.

12.6 In backtracking, since no rules are newly fireable, a rule is popped off the top

of the backtrack stack and fired. If the backtrack stack is empty, FLOPS

reverts to command mode.

12.7 We may place our prior knowledge in rules, or may place our prior knowl-

edge in a database and write rules to interpret that database.

12.8 If knowledge is placed in rules, the rules are easier for a user to interpret and

follow, at the cost of perhaps massive numbers of rules and difficulty of

program maintenance. If knowledge is placed in a database and rules are

written to interpret that database, we gain great economy in the number of

rules required and greatly ease program maintenance, at the cost of

having a program that is difficult for a user to comprehend.

12.9 This is sometimes not an easy question to answer. If our program will inter-

rogate a human user, when the next question to be asked depends on the

answer to the previous question, a depth-first using sequential rule firing

will be best. If the information is entered automatically rather than by a

human, as in real-time online work or when reading disk files, it is probable
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that a breadth-first search using parallel rule-firing will be appropriate.

Sometimes a depth-first search is easier to visualize, as in MC.FPS. In

general, since parallel rule-firing involves less systems overhead than

sequential, a breadth-first search is preferred if there is a choice.

13.1 Defuzzification.

13.2 In both cases. Fuzzification converts an input number into its word equiva-

lents, and permits using words in the antecedent of rules fired later on. This

is very useful for both numeric or word answers.

13.3 A discrete fuzzy set is a linguistic variable if its member words describe a

number, such as fSmall, Medium, Largeg, and if membership functions

defined on the real line are used to map these words onto the real line. It

is not a linguistic variable if the words do not describe a number, such as

fFord, Chevrolet, Chryslerg.

13.4 Non-numeric discrete fuzzy sets, where each member corresponds to an

answer, such as fMajor_depression, Bipolar_disorder, Schizophreniag.

Alternatively, strings may be output together with their truth values.

13.5 An ambiguity occurs when alternate word descriptors both have non-zero

grades of membership, and are not mutually exclusive. A contradiction

occurs when, in the same situation, the descriptors are mutually exclusive.

13.6 First, data are input and converted if necessary to an appropriate form, such as

fuzzification of numbers into words, converting scalars to fuzzy numbers,

screening out obvious artifacts, and maintaining moving averages. Next,

rules use the input data to arrive at preliminary conclusions. Next, contradic-

tions are detected and resolved. Then, output candidates are checked for reason-

ableness and completeness. Finally, the checked final conclusions are output.

13.7 Nothing should be done about ambiguities; they lend robustness to a

program, and should be held on to. Contradictions, on the other hand,

need to be resolved and check before being output.

14.1 New skills and new factual knowledge.

14.2 By adding new rules or by storing new data.

14.3 If the general format of the new rules is known, the rule can be generated by

the consequent of a program rule, the previously unknown elements being

filled in by variables defined in the rule antecedent.

14.4 A rule from PAVLOV2.FPS, simplified to omit non-essentials, is

rule block 8 (goal Generates rule for response to
conditioned stimuli)
IF (in Count id1 = <ID1> AND id2 = <ID2> AND N > 2)

(in Wired-in id = <ID1> AND response = <R>)
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THEN
rule block 3
IF (in NewStimulus id = ‘‘<ID2>’’)
THEN

message ‘<ID2> - LOOK OUT - <ID1> coming\,
<R>!\n’;

14.5 If we are going to learn by generating new rules, the most important command

that relates to learning is rule, which actually generates the rule itself. We

may also require the command declare, which declares a new data

element, and make, that creates an instance of the new data element.

If we are going to learn by adding facts to a library of expert factual knowl-

edge, we will need the make command to create the new data. If we have

learned that an old datum is incorrect, we will need the modify or in com-

mands to modify the old datum, or the delete command to get rid of it. If

the data are completely new, we may need also the declare command to

create the template for the new data; in that case, we will usually need new

rules to deal with the new data format.

14.6 The rules must be written to interpret the database. This can be done simply

by using the data from the database for comparison with new data in the rule

antecedent as in AUTO2.FPS, or by using the database to generate new rules

as in ECHO.PAR.

14.7 Adding expert factual knowledge to a database is to be preferred, for two

reasons. First, this gives considerable economy in the number of rules that

must be used. Second, program maintainability is greatly eased; often the

program itself does not need to be modified, only the database.

14.8 Use of the FLOPS string ¼ and string þ commands gives complete

freedom in the format of new rules and new data elements.

15.1 The major difference between human and process interaction programs is that

interaction with a human usually have a tolerance of several seconds for time

delays between data input and response; hard-wired programs may require

response times measured in milliseconds. Also, it is hard for a defective

program that interacts with a human to cause undetected catastrophic

results; a defective hard-wired program can cause catastrophic results.

15.2 Detection of particular events, such as alarm conditions or fault diagnosis,

can be carried out effectively by real-time on-line fuzzy expert systems.

15.3 The acquire command is used to input and output on-line data.

15.4 The easiest artifact to detect is an out-of-range input value. Out-of-range

values of the rate of change of input values can also identify artifacts, but

the input data will probably need smoothing to calculate a dependable

first derivative.
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15.5 An exponentially mapped moving average is a very simple way to smooth

data.

15.6 Exponential smoothing effectively introduces a time delay equal to the

smoothing time constant.

15.7 The time lag introduced by exponential smoothing can furnish a smoothed

past reference value for calculation of rates of change or for comparison

with present values for event detection.

15.8 High-frequency noise can be quantitated by squaring the difference between

current value and an exponential moving average, and taking a relatively

short-time-constant moving average of the squared differences.

15.9 Formulas for the rates of change of sampled input data that correct for the

presence of second or higher derivatives can be calculated by using a

McClauren series to express the input variable for two or more samples

ago, and eliminating terms involving the higher derivatives.

15.10 A typical fuzzy control rule might be

IF input is Small and rate is Large then control is
Negative;

In this rule input, rate, and control are floating-point numbers; Small, Large,

and Negative are members of discrete fuzzy sets, linguistic variables, to

which membership functions are attached.

15.11 The notation is very compact; fuzzification and defuzzification are auto-

matic. However, the notation is quite inflexible, and does not permit

making the discrete fuzzy sets available for use in later rules or for

program output.

15.12 Focused rules usually permit a fuzzy reasoning system to be built with a much

smaller number of rules than required by unfocused rules following the typical

fuzzy control rule pattern. Such rules also usually produce more reliable

outputs. The only disadvantage is that the programmer has to think a lot

harder; it is difficult to construct such rules by data mining techniques.

15.13 Since many if not most computer programs use the standard array of

Boolean numerical comparison operators, it is not surprising that the

programs using fuzzy numbers require the fuzzy version of the common

Boolean numerical comparison operators.

15.14 Data-driven sequential-rule-firing programs retain all data in memory, in

case they are needed during backtracking. This means that if continuously

bringing in data on-line, available memory will be exhausted in a finite

length of time.

15.15 Data-driven parallel-rule-firing programs do not retain deleted data or data

that has been later modified in memory; since there is no backtracking, old
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data are not again needed. The result is that real-time on-line programs can

run indefinitely without overflowing memory.

15.16 The major steps in a real-time on-line program are data acquisition; data

screening; data processing; output validity checks; and program output.

15.17 After development off-line using a fuzzy expert system shell, the program

can be recoded using a procedural language, possibly replacing fuzzy

logic with interval logic.

15.18 The first stage is to acquire data on disk so that the program can be written

and debugged off-line. If the program is to be closed-loop, a way of simu-

lating the process should be found so that the dynamics of a program run

can be checked. Processes may be simulated by a digital computer

program, an analog computer, or some other process model that will

accept the expert system output and produce a response that can be input

to the expert system.
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INDEX

Aggregation, 51–53, 63, 117,

119–122, 147

Alpha cuts, 72, 73–74

Ambiguity, measure of, 125

Ambiguities, 1, 2, 10, 11, 25, 26, 99,

122, 124–127, 147, 219,

239–240

AND operators, 16, 30–34, 85–86

AndOrNot.fps, 32–34

Antecedent, 3–4, 10, 13, 16–17
Approximate reasoning, 36, 57,

65–69, 100, 105–109

Arithmetic, fuzzy, 72–74

Artifact detection, 260, 263, 268,

269–272

Association, prior, 61, 63, 86–88

Backward chaining, 24

Bayes, 25, 92–95

Blackboard system, 24–25

Certainty factor, 1, 25, 28

Classification, 38, 117–122,

123–124, 126–128, 133, 134,

135, 136, 146–149, 220–227,

227–235, 235–240

Classical logic, 29

CLIPS, 8

Combs method, 132–135

Command mode, 19–21

Comparing fuzzy numbers, 74–78, 80

Complement: see NOT operator:

Composition of fuzzy relations, 44–47

Confidence, 23, 25

Conjunction: see OR operators

Consequent, 3, 11, 13, 16, 17–18
Contradictions, 1, 2, 10, 11, 26, 99,

122, 124, 126–129, 141–149

Correlation logic, 60–63, 85–88

Data-driven, 2, 4, 11, 18–19

Data smoothing, 260–265

Data types, 16–17
Debugging, 13, 20, 155–157,

162–164, 167–168, 181–197,

199–218, 272–273

Defuzzification, 5, 51–54, 68, 92, 104,

119–122

Dempster–Shafer method, 25, 28,

94–95

Differentiation, 260, 263–265
Disjunction: see AND operators

Domain expert, 3, 7, 8, 10, 11, 13, 69

Dual truth values, 94, 141–149

Echo.par, 134, 147–149, 192–196

Elkan, C, 64

Evidence theory: See Dempster–

Shafer

Excluded Middle, 29, 60, 63, 64, 85,

86–88, 91, 96, 97, 141

Expert Systems, 1–4, 7–9, 11

Extension principle, 48, 57, 71

FLOPS expert system shell, 11

Forward chaining, 24, 27

FRIL, 8, 10, 95
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Fuzzification, 5, 6, 29, 49–51, 54, 117,

119, 123, 130, 173–179

Fuzziness, measure of, 122, 124–125

Fuzzy

arithmet, 72–74

inference, 18, 29, 45, 57, 65, 67, 69,

93, 99–138

control, 1, 5, 8, 10, 43, 51, 53, 54,

65, 66, 69, 91, 118

logic, 34, 86

bounded sum/difference, 31

classical, 29

correlation, 86

min–max(Zadehian), 31

product–sum, 31

numbers, 40

propositions, 36, 78

reasoning, 5

relations, 43–47

sets, 38–43

Hedges, 8, 13, 16, 69–72

IDE, 5, 12, 13, 151–157, 181,182,

Implication, 30, 34–36, 45, 66–69, 99,

105

IMPLY operators, 34–36

Inference

monotonic, 11, 100, 102–103, 105,

106–109, 111, 137

monotonic downward, 100,

103–105, 106–109, 111, 138

non-monotonic, 11, 100, 103, 105,

106–109, 111, 127–129, 137

Information theory, 125

Integrated development environment:

see IDE

Intersection Rule Configuration, 131

Interval arithmetic, 72–74

Invalidating data, 127–129

IRC (see Intersection Rule

Configuration)

Iris classification: see iris.par

Knowledge engineer, 3, 8, 10, 11

Learning, 3, 6, 15, 243–255

by adding rules, 243–251, 251–255

by adding to a data base of facts,

251–253

Linguistic terms, 5, 6, 39, 43

Linguistic variables, 39, 42–43

Membership functions, 11, 38–39,

41–43

Metarules, 18, 23, 25, 27, 100,

231–232

Min–max logic: see Zadeh operator

Metus, 8

Modification

of data, 115–117

of truth values, 99–112, 116–120

Modus Ponens, 35–36

Monotonic inference: see inference,

monotonic

Moving average, 260–262
Multi-step reasoning, 18, 110, 117,

137, 141–146

Necessity, 25, 28, 30, 35, 36, 94, 99,

141–146

Neural Nets, 6

Non-contradiction, law of, 29, 60, 63,

64, 85, 86, 88, 91, 96, 97

Non-monotonic inference (see

Inference, non-monotonic)

Non-numeric data, 5, 10, 38, 39, 54,

91, 122, 123, 124, 135, 219, 220

NOT operator, 31, 85

Numbers.fps, 159–161

On-line operation, 257–273

OR operators, 31, 86
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Parallel mode, 21, 181–196

pconf, 23

Pavlov1.par, 244–250

Pavlov2.par, 250–253

Possibility, 25, 28, 29, 30, 35, 36, 94,

99, 141–149
Prior association: see Association,

prior

Production systems, 2

Rates of change, 260, 263–265

Real-time, 257–273

Reasoning, types of, 100

Resolving contradictions, 127–129,

141–149

RETE algorithm, 22

Rule, 15–18

Rule generation, 6, 9, 18, 229, 240,

244–250

Run mode, 19–23

Schizo.par, 22, 220, 235–240

Sequential mode (see serial mode)

Serial mode, 19–22

Standard fuzzy logic: see Zadeh

operators

Symbolic reasoning, 7

t-conorms, 57–65

t-norms, 57–65

truth-functional logic, 30, 34, 85

Truth value, 25

Time lags, 260

Uncertainties, 25

Variables in FLOPS, 33, 88, 89

Zadeh operators, 31
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